Аналоговый частотомер своими руками. Простой цифровой частотомер

Подписаться
Вступай в сообщество «outmall.ru»!
ВКонтакте:

Конструктивно прибор состоит из дисплея, образованного семью 7-сегментными светодиодными индикаторами, микроконтроллера и нескольких транзисторов и резисторов. Микроконтроллер выполняет все необходимые функции, поэтому применение каких-либо дополнительных микросхем не требуется.

Принципиальная схема прибора достаточно проста и изображена на Рисунке 2. Проект в формате Eagle (принципиальная схема и печатная плата) доступен для скачивания в секции загрузок.

Выполняемые микроконтроллером задачи просты и очевидны: подсчет количества импульсов на входе за 1 секунду и отображение результата на 7-разрядном индикаторе. Самый важный момент здесь - это точность задающего генератора (временная база), которая обеспечивается встроенным 16-разрядным таймером Timer1 в режиме очистки по совпадению (CTC mode). Второй, 8-разрядный, таймер-счетчик работает в режиме подсчета количества импульсов на своем входе T0. Каждые 256 импульсов вызывают прерывание, обработчик которого инкрементирует значение коэффициента. Когда с помощью 16-разрядного таймера достигается длительность 1 с, происходит прерывание, но в этом случае в обработчике прерывания коэффициент умножается на 256 (сдвиг влево на 8 бит). Остальное количество импульсов, зарегестрированное счетчиком, добавляется к результату умножения. Полученное значение затем разбивается на отдельные цифры, которые отображаются на отдельном индикаторе в соответствующем разряде. После этого, непосредственно перед выходом из обработчика прерывания, оба счетчика одновременно сбрасываются и цикл измерения повторяется. В «свободное время» микроконтроллер занимается выводом информации на индикатор методом мультиплексирования. В исходном коде программы микроконтроллера автор дал дополнительные комментарии, которые помогут детально разобраться в алгоритме работы микроконтроллера.

Разрешение и точность измерений

Точность измерений зависит от источника тактовой частоты для микроконтроллера. Сам по себе программный код может вносить погрешность (добавление одного импульса) на высоких частотах, но это практически не влияет на результат измерений. Кварцевый резонатор, который используется в приборе, должен быть хорошего качества и иметь минимальную погрешность. Наилучшим выбором будет резонатор, частота которого делится на 1024, например 16 МГц или 22.1184 МГц. Чтобы получить диапазон измерения до 10 МГц необходимо использовать кварцевый резонатор на частоту 21 МГц и выше (для 16 МГц, как на схеме, диапазон измерений становится немного ниже 8 МГц). Кварцевый резонатор на частоту 22.1184 МГц идеально подходит для нашего прибора, однако приобретение именно такого с минимальной погрешностью для многих радиолюбителей будет сложной задачей. В таком случае можно использовать кварцевый резонатор на другую частоту (например, 25 МГц), но необходимо выполнить процедуру калибровки задающего генератора с помощью осциллографа с поддержкой аппаратных измерений и подстроечного конденсатора в цепи кварцевого резонатора (Рисунок 3, 4).

В секции загрузок доступны для скачивания несколько вариантов прошивок для различных кварцевых резонаторов, но пользователи могут скомпилировать прошивку под имеющийся кварцевый резонатор самостоятельно (см. комментарии в исходном коде).

Входной сигнал

В общем случае на вход прибора может подаваться сигнал любой формы с амплитудой 0 … 5 В, а не только прямоугольные импульсы. Можно подавать синусоидальный или треугольный сигнал; импульс определяется по спадающему фронту на уровне 0.8 В. Обратите внимание: вход частотомера не защищен от высокого напряжения и не подтянут к питанию, это вход с высоким сопротивлением, не нагружающим исследуемую цепь. Диапазон измерений может быть расширен до 100 МГц с разрешением 10 Гц, если применить на входе соответствующий высокоскоростной делитель частоты.

Дисплей

В приборе в качестве дисплея используются семь светодиодных 7-сегментных индикаторов с общим анодом. Если яркость свечения индикаторов будет недостаточной, можно изменить номинал резисторов, ограничивающих ток через сегменты. Однако не забывайте, что величина импульсного тока для каждого вывода микроконтроллера не должна превышать 40 мА (индикаторы тоже имеют свой рабочий ток, о его величине не стоит забывать). На схеме автор указал номинал этих резисторов 100 Ом. Незначимые нули при отображении результата измерения гасятся, что делает считывание показаний более комфортным.

Печатная плата

Двухсторонняя печатная плата имеет размеры 109 × 23 мм. В бесплатной версии среды проектирования печатных плат Eagle в библиотеке компонентов отсутствуют семисегментные светодиодные индикаторы, поэтому они были нарисованы автором вручную. Как видно на фотографиях (Рисунки 5, 6, 7) авторского варианта печатной платы, дополнительно необходимо выполнить несколько соединений монтажным проводом. Одно соединение на лицевой стороне платы - питание на вывод Vcc микроконтроллера (через отверстие в плате). Еще два соединения на нижней стороне платы, которые используются для подключения выводов сегмента десятичной точки индикаторов в 4 и 7 разряде через резисторы 330 Ом на «землю». Для внутрисхемного программирования микроконтроллера автор использовал 6-выводный разъем (на схеме это разъем изображен в виде составного JP3 и JP4), расположенный в верхней части печатной платы. Этот разъем не обязательно припаивать к плате, микроконтроллер можно запрограммировать любым доступным способом.

Загрузки

Принципиальная схема и рисунок печтаной платы, исходный код и прошивки микроконтроллера -

На базе описанного формирователя импульсов можно собрать еще один прибор - частотомер. Назначение его отражено в названии - измерение частоты исследуемого сигнала.


При поступлении на вход элемента DD1.2 последовательности прямоугольных импульсов на выходе формирователя появляется последовательность отрицательных импульсов, длительность которых зависит от емкости конденсаторов, подключенных в данный момент к резистору R1 и входу элемента DD1.2. В течение действия каждого отрицательного импульса через один из резисторов R2-R4 и микроамперметр РА1 проходит ток. После окончания одного импульса и до начала следующего стрелка механической системы микроамперметра за счет инерционности не успевает возвращаться в начальное положение. Таким образом, чем больше частота импульсов, тем больше угол отклонения стрелки. Причем зависимость эта линейная, что значительно облегчает калибровку прибора.

Диапазон частот, измеряемых этим прибором (20...20000 Гц), разбит на три поддиапазона: 20...200, 200...2000, 2000...20000 Гц. Поддиапазон измерения выбирается переключателем SA1 и зависит от емкости подключенного конденсатора.

При калибровке прибора на его вход подают последовательность импульсов с частотой, соответствующей наибольшей частоте поддиапазона, и подбором сопротивления резисторов R2-R4 устанавливают стрелку на конечную отметку шкалы.

Для удобства эксплуатации в качестве микроамперметра РА1 использовать авометр, включив его в режим измерения постоянного тока на пределе 100... 150 мкА.

Первая конструкция частотомера состоит из микроконтроллера PIC16F84 и делителя частоты на 10 на счетчике 193ИЕ2. Выбор нужного диапазона происходит сдвоенным тумблером SA1. В первом положение, входной сигнал меняет делитель и сразу проходит на вход микроконтроллера. Это дает возможность измерять частоту до 50 МГц.

Основой второй схемы частотомера является эмикроконтроллер PIC16F84A, который с помощью импульсов внешнего сигнала, обрабатывает полученные результаты измерений и вывод их на ЖК дисплей. Кроме того, микроконтроллер периодически опрашивает кнопки (SB1-SB4) и управляет питанием частотомера.

Особенностью данной конструкции частотомера на микроконтроллере является то, что она работает вместе с компьютером и подсоединена к материнской плате через разъем IRDA. От этого же разъема конструкция получает питание

Еще одна схема частотомера

Этот частотомер сделан также на одной м.с, минимуме дискретных элементов и может выполнять следующие измерения: частоты, периода, отношения частот, временного интервала, счёт (работать как накапливающий счётчик), производить контроль от внутреннего генератора.

Результаты всех измерений выводятся в цифровой форме на восьмиразрядном светодиодном индикаторе. Максимальная измеряемая частота 10 МГц. В иных режимах измерения максимальная входная частота -2,5 МГц.

Упростить электрическую схему частотомера позволяет использование известной и популярной за рубежом недорогой микросхемы типа 7216А. Она представляет собой универсальный декадный счётчик со встоенным задающим генератором, 8-разрядным счётчиком данных с защёлкой, дешифратором для 7-сегментного индикатора с восемью выходными усилителями для светодиодных индикаторов. Схема прибора изображена на рисунке. На выводы 28 (канал I) или 2 (канал II) подают измеряемую импульсную последовательность ТТЛ уровня. С выводов 4-7, 9-12 идёт управление сегментами светодиодных индикаторов. Выводы 15-17,19-23 используются для мультиплексного управления светодиодными индикаторами, а выводы 15,19-23, кроме того, используются для выбора диапазона и режима измерений, с них сигналы через переключатели и RC цепи подаются на выводы 14 и 3. Вывод 27 используется для фиксации показаний, а вывод 13 для сброса. Кварцевый резонатор с частотой 10 МГц подключают к выводам 25, 26. Питается прибор от источника +5 В (аккумулятор, батарея сухих элементов, стабилизированый сетевой блок), собственное потребление ИМС не превышает 5 мА, а максимальный ток светодиодов может составлять до 400 мА.

Прибор прост в эксплуатации. Управление сводится к выбору режима работы переключателем SB4: Частотомер, Измеритель периода, Измеритель отношения частот, Измеритель временного интервала, Накапливающий счётчик, Контроль, а также к выбору диапазона измерений переключателем SB3 (по младшему разряду): 1. 0,01 с/1 Гц, 2. 0,1 с/10 Гц, 3. 1 с/100 Гц, 4. 10 с/1 кГц.

Кроме микросхемы 7216А в приборе использованы резисторы мощностью 0,125 Вт, конденсаторы С1-СЗ, С6, С7 керамические, светодиодный индикатор собирается из восьми цифровых 7-сегментных индикаторов с общим анодом АЛС321Б, АЛС324Б, АЛС337Б, АЛС342Б, КИПЦ 01Б, КИПЦ 01 Г. Кварц малогабаритный на 10 МГц.

Для нормальной работы схемы на входы необходимо подавать сигнал ТТЛ уровня. Порог переключения по входам микросхемы 2 В, поэтому для измерений малых сигналов вход прибора нужно подключить к выходу усилителя-формирователя, который может быть реализован по любой из известных схем. Главное, чтобы он с одинаковым успехом преобразовывал в прямоугольные импульсы как сигналы с частотой 1 Гц, так и 10 МГц. Желательно иметь большое входное сопротивление этого усилителя. При разработке этой схемы использовались данные производителя микросхемы ICM7216A


Сегодня рассмотрим пошагово создание частотомера своими руками. Первым делом поговорим о характеристиках и особенностях прибора на pic16f628a, рассмотрим схему и особенности монтажа. Вторая схема частотомера - цифровой шкалы. Уделим внимание подбору необходимых комплектующих и остановимся детальнее на сборке. Третья схема представляет простой частотомер на микросхемах. Но обо всём по порядку.

  • Смотрите также 3 рабочие схемы для сборки

Частотомер на PIC16F628 своими руками

Первым делом рассмотрим простую и дешевую схему частотомера. Он может измерять сигналы от 16 до 100Гц с максимальной амплитудой 15В. Чувствительность высокая, разрешение - 0,01 Гц. Входной сигнал может быть синусоидальной, прямоугольной или треугольной волной.

Частотомер может использоваться во многих приложениях. Например, для наблюдения за точностью генератора, для измерения частоты сети или нахождения оборотов двигателя, соединенного с датчиком.

Схема частотомера и необходимые детали для монтажа

Файл печатной платы представлен в формате PDF, архив можно скачать ниже. Вы можете сделать плату используя метод ЛУТ.


CCP (Capture(Захват)/Compare(Сравнение)/PWM(ШИМ)) модуль PIC-микроконтроллера считывает входной сигнал. Используется только функция захвата.


Необходимые детали для сборки частотомера:
  • МК PIC 8-бит - PIC16F628A (PIC16F628-04/P).
  • 4 биполярных транзистора - BC547.
  • 2 керамических конденсатора - 22 пФ.
  • 12 резисторов - 1х4.7 кОм, 4х1 кОм, 7х330 Ом.
  • Кварц - 4 МГц.
  • 4 семисегментных индикатора (общий катод).
Радиоэлементы для изоляции:
  • Биполярный транзистор - BC547.
  • Выпрямительный диод - 1N4148
  • Оптопара - 4N25M.
  • 4 резистора - 2х1 кОм, 1х10 кОм, 1х470 Ом.
Необходимые комплектующие для сборки питания:
  • Линейный регулятор - LM7805.
  • 2 электролитических конденсатора - 100 мкФ, 16В.
  • 2 полиэфирных конденсатора - 220 нФ.
Дисплеи - красные, 7-сегментные светодиодные, 14,2 мм с общим катодом.

Перед измерением частоты входного сигнала, он должен быть преобразован в прямоугольный. Для этой цели используется схема оптической развязки с оптроном 4N25. Таким образом, входной сигнал надежно изолирован от микроконтроллера и превращается в меандр. Амплитуда сигнала не должна превышать 15В. Если это произойдет, резистор 1кОм может сгореть. Если вы хотите измерить частоту сети, вы должны использовать 220В/9В трансформатор.

Видео о сборке частотомера на PIC16F628A:

Частотомер - цифровая шкала. Схема и инструкция по монтажу

Рассматриваемое устройство выполняет функции:

  • частотомера с выводом измеренного значения частоты в герцах (до 8 разрядов);
  • цифровой шкалы с АПЧ генератора плавного диапазона (ГПД) для радиолюбительского трансивера;
  • электронных часов.
Основу устройства составляет программируемый контроллер PIC16F84 фирмы Microchip. Быстродействие и широкие функциональные возможности этого контроллера позволяют подавать сигнал частотой до 50 МГц прямо на его счетный вход, то есть можно обойтись без предварительного делителя, обычно применяемого в устройствах подобного типа.

Основные характеристики цифрового частотомера

  1. Диапазон измеряемых частот - 0–50 МГц.
  2. Диапазон программируемых значений ПЧ - 0–16 МГц.
  3. Минимальный уровень входного сигнала - 200 мВ.
  4. Время измерения частоты - 1 с.
  5. Погрешность измерения - ±1 Гц.
  6. Напряжение питания - 5±0,5 В.
  7. Ток потребления устройства - не более 30 мА.
Наличие электрически перепрограммируемой памяти данных внутри PIC16F84 позволило без специального оборудования перепрограммировать значение промежуточной частоты (ПЧ). Это дает возможность оперативно встраивать цифровую шкалу в трансивер с любым (0–16 МГц) значением промежуточной частоты.

Смотрите также видео, как собрать частотомер своими руками:

Простой частотомер на микросхеме своими руками - характеристики и схема

Параметры предлагаемого частотомера приведены в следующей таблице:

Режим работы Частотомер Частотомер Цифровая шкала
Диапазон измерений 1 Гц…20 МГц 1–200 МГц 1–200 МГц
Дискретность 1 Гц 10 Гц 100 Гц
Чувствительность 40 мВ 100 мВ 100 мВ

Данный частотомер обладает целым рядом преимуществ по сравнению с предшествующими:
  • современная дешевая и легко доступная элементная база;
  • максимальная измеряемая частота - 200 МГц;
  • совмещение в одном приборе частотомера и цифровой шкалы;
  • возможность увеличения максимальной измеряемой частоты до 1,2 ГГц при незначительной доработке входной части прибора;
  • возможность коммутации во время работы до 4 ПЧ.
Измерение частоты осуществляется классическим способом: подсчет количества импульсов за фиксированный интервал времени.

Входной сигнал через конденсатор С4 поступает на базу транзистора VT1, который усиливает входной сигнал до уровня, необходимого для нормальной работы микросхемы DD2. Микросхема DD2 193ИЕЗ представляет собой высокочастотный делитель частоты, коэффициент деления которого равен 10.

Ввиду того что в используемом микроконтроллере К1816ВЕ31 максимальная частота счетного входа Т1 f=Fкв/24, где Fкв - частота используемого кварца, а в частотомере Fкв=8,8672 МГц, сигнал с высокочастотного делителя поступает на дополнительный делитель частоты, представляющий собой десятичный счетчик DD3. Процесс измерения частоты начинается с обнуления делителя DD3, сигнал сброса которого поступает с вывода 12 микроконтроллера DD4. Сигнал разрешения прохождения измеряемого сигнала на десятичный делитель поступает с вывода 13 DD4 через инвертор DD1.1 на вывод 12 DD1.3.

По окончанию фиксированного интервала времени измерения на выводе 13 DD4 появляется высокий уровень, который через инвертор DD1.1 запрещает прохождение измеряемого сигнала на делитель DD3, и начинается процесс преобразования накопленных импульсов времени в частоту, а также подготовка данных для вывода на индикацию.

Принципиальная схема частотомера и необходимые детали


Список необходимых радиоэлементов:
  • 6 микросхем - DD1 (К555ЛА3); DD2 (К193ИЕ3); DD4 (КР1816ВЕ31); DD5, DD7 (2хК555ИР22); DD6 (К555ИД7); DD8 (К573РФ2).
  • Логическая ИС (DD3) - К555ИЕ19.
  • 17 биполярных транзисторов (VT1, VT2–VT17) - КТ368А и 16хКТ361В
  • Стабилитрон (VD1) - КС113А.
  • 7 конденсаторов - С1 (0.01 мкФ); С2, С8 (2х0.1 мкФ); С3 (56 пФ); С4 (1000 пФ); С5 (22 пФ); С6 (12 пФ).
  • Подстроечный конденсатор (С7) - 5-20 пФ.
  • Электролитический конденсатор (С9) - 3.3 мкФ.
  • 41 резистор - R1 (51 Ом); R2, R25–R40 (17х68 кОм, R2 по ошибке в схеме указана как R3); R3 (10 кОм); R4, R6 (2х560 Ом); R5 (33 Ом); R6, R7 (2х1 кОм, в схеме по ошибке два резистора R6); R8–R23 (16х20 кОм); R24 (2 кОм).
  • Кварцевый резонатор (ZQ1) - 8.86 МГц.
  • Вакуумно люминисцентный индикатор (HL1) - ИВ-18.
  • Переключатель (S1)
  • Блок переключателей (S2)
Данный прибор может работать как в высокочастотном, так и в низкочастотном диапазонах. При работе в низкочастотном диапазоне переключатель S1 необходимо установить в верхнее положение и сигнал подавать на вход 2 (вывод 9) платы частотомера. Для измерения частоты от 1 Гц до 20 МГц необходимо использовать формирователь.

Программа работы микроконтроллера находится в ПЗУ DD8, микросхема DD5 используется для мультиплексирования адресов микроконтроллера. Прошивка ПЗУ для работы прибора в качестве частотомера приведена в таблице:


Для получения максимальной эффективности использования микроконтроллера в приборе применена динамическая индикация.

При использовании частотомера в качестве цифровой шкалы на вывод 22 DD8 необходимо с помощью переключателя S2.3 подать высокий уровень. Выбор значения ПЧ производится путем соединения выводов 10,11 микросхемы DD4 с землей. Вход 3 (вывод 5) платы частотомера предназначен для включения выбранной промежуточной частоты (например, при переходе с приема на передачу). Во время работы прибора в режиме цифровой шкалы младшие разряды индикатора показывают сотни герц. Работе прибора в режиме цифровой шкалы соответствует иная прошивка ПЗУ.




Печатная плата изготовлена из двухстороннего стеклотекстолита размерами 100х130 мм. Индикатор крепится непосредственно на печатной плате двумя хомутами из обычного монтажного провода. Для установки микросхемы DD8 предусмотрена панелька. При разводке платы предусматривалась необходимость размещения транзистора VT1 в максимальной близости к DD2.

Вокруг VT1 и DD2 оставлено возможно большее количество фольги с обеих сторон с целью экранирования высокочастотных цепей. В конструкции в качестве индикатора HL1 применен ИВ-18 как наиболее популярный в радиолюбительских конструкциях. В случае необходимости миниатюризации конструкции индикатор ИВ-18 может быть заменен на ИВ-21, который имеет значительно меньшие габаритные размеры. В этом случае необходимо уменьшить напряжение накала и отрицательное напряжение на катоде согласно паспортным данным. Микросхему DD1 желательно применять серии 1533 как более высокочастотную.

Для питания частотомера используется блок питания с напряжением от -20 В до -30 В и напряжением накала - до 4,8 В при использовании индикатора ИВ-18. В указанной схеме блока питания желательно диод КД503 заменить на стабилитрон КС133, что исключает ложную подсветку сегментов индикатора.

Наладку частотомера следует начинать с проверки на обрыв всех без исключения соединительных проводников печатной платы, затем проверить на отсутствие замыкания соседних на печатной плате соединительных проводников. Сразу же после подачи питания на частотомер проконтролируйте ток потребления по напряжению +5 В. Он не должен превышать 250 мА.

Затем измерьте напряжение на коллекторе VT1, оно должно находиться в пределах 2,0–3,0 В. Установка указанного напряжения осуществляется подбором резистора R3. При безошибочном монтаже, исправных деталях и отсутствии ошибок в программе окончательное налаживание прибора заключается в точной установке частот задающего генератора микроконтроллера с помощью конденсатора С7 в соответствии с показаниями образцового частотомера.

Благодаря программно-управляемому процессу измерения можно путем незначительного изменения программы микроконтроллера применять недесятичные высокочастотные делители. Были опробованы в данном приборе микросхемы 193ПП1 (коэффициент деления - 704), 193ИЕ6 (коэффициент деления - 256). Испытания показали, что максимальная частота измеряемого сигнала достигает значения 1 ГГц. Наиболее предпочтительной оказалась микросхема 193ПЦ1, поскольку она имеет входной усилитель. Микроконтроллер К181ВЕ51 можно заменить на К1816ВЕ31, К1830ВЕ31, К1830ВЕ51 или их зарубежные аналоги - 8031, 80С31. При отсутствии микросхемы 193ИЕЗ можно заменить ее К500ИЕ137, включив ее по типовой схеме.

Видео, как собрать частотомер на одной микросхеме:

Большинство конструкций цифровых частотомеров, описанных в литературе, содержит немало дефицитных компонентов, а в качестве источника стабильной частоты в таких приборах применяется дорогостоящий кварцевый резонатор. В итоге частотомер получается сложным и дорогим.

Предлагаем читателям описание простого частотомера с цифровым отсчетом, источником стабильной (эталонной) частоты в котором служит сеть переменного тока 50 Гц. Прибор найдет применение при различных измерениях в радиолюбительской практике, например в качестве калиброванных шкал в генераторах звуковой частоты, повышающих их достоверность, или вместо громоздких конденсаторных частотомеров. Со светодиодными или магнитными датчиками данный прибор можно применять для контроля числа оборотов электродвигателей и т. д.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ЦИФРОВОГО ЧАСТОТОМЕРА:

диапазон измеряемых частот, Гц…….. 10-999.9Х10 3

действующее значение входного напряжения, В…….0,02-5

время измерения, с …. 0,01; 0,1; 1

потребляемая мощность, Вт …. 3

погрешность измерения,счета……..±4Х10 -3 ±1.

Суммарная относительная погрешность измерения частоты определяется соотношением:

б1=±бэт± 1/N,

где бэт - частотная погрешность эталонной частоты;

1/N - погрешность дискретности (не зависит от измеряемой частоты и равна ±1 счета младшего разряда).

Из приведенной формулы видно, что погрешность измерений находится в прямой зависимости от стабильности частоты сети 50 Гц. Согласно ГОСТу нестабильность частоты сети 50 Гц составляет ±0,2 Гц за 10 минут. Следовательно, относительную погрешность частотомера можно считать равной ±4Х10 -3 ±1 счета. При практических измерениях относительная погрешность частотомера составила ±2Х Х10 -3 ±1 счета.

Действие частотомера основано на подсчете количества периодов измеряемого сигнала за эталонные (0,01; 0,1; 1 с) промежутки времени. Результаты измерений отображаются на цифровом табло и автоматически повторяются через определенные промежутки времени.

Частотомер (рис. 1) включает в себя: усилитель-формирователь входного сигнала, временной селектор, декадный счетчик, цифровой индикатор, формирователь сети, формирователь эталонных временных интервалов, устройство управления и сброса, блок питания.

В усилителе-формирователе происходит усиление и преобразование сигнала измеряемой частоты fx в прямоугольные импульсы той же частоты, которые поступают на один из входов временного селектора. На другой его вход подают с устройства управления и сброса прямоугольные импульсы эталонных временных интервалов. В формирователе сети вырабатываются прямоугольные импульсы частотой 100 Гц.

Время измерения, в течение которого открыт селектор, выбирают переключателем SA. В момент прихода эталонного импульса временной селектор открывается и на его выходе появляется пачка прямоугольных импульсов измеряемой частоты fx. Длительность пачки соответствует длительности эталонного импульса, «выбранного переключателем SA. Далее происходит подсчет импульсов в пачке и индикация их на цифровом табло.

По истечении времени индикации импульс сброса (с устройства управления и сброса) воздействует на временной селектор и декадный счетчик- табло очищается, а селектор подготавливается к новому циклу измерений.

Принципиальная схема частотомера - на рисунке 2. Входной сигнал измеряемой частоты усиливается резис-тивным усилителем на транзисторе VT1 и окончательно формируется элементами DD4.1, DD4.2 в последовательность прямоугольных импульсов измеряемой частоты. Входная цепь VT1 имеет защиту по току (R3) и напряжению (VD1). С вывода 6 DD4.2 импульсы прямоугольной формы входного сигнала поступают на один из входов (вывод 9 DD4.3) временного сейектора. На второй вход (вывод 10 DD4.3) подают прямоугольные импульсы эталонных интервалов времени. По окончании действия эталонного импульса временной селектор блокируется, входные импульсы на счетчик не проходят.

Подсчет входных импульсов осуществляется четырехразрядным счетчиком на микросхемах DD6-DD9, а индикаторы HG1-HG4 показывают частоту входного сигнала в цифровой форме.

На диодах VD10-VD13 выполнен выпрямитель сетевого напряжения. Пульсирующее (с частотой 100 Гц) напряжение преобразуется триггером Шмитта (DD1.1, DD1.2) в прямоугольные импульсы частотой 100 Гц, которые затем поступают на двухступенчатый декадный делитель DD2, DD3. Таким образом, на выходах микросхем DD1.2 (вывод 11), DD2 (вывод 5), DD3 (вывод 5) получают импульсы эталонных временных интервалов 0,01, 0,1 и 1 с. Время измерения устанавливают переключателем SA2.

Устройство управления и сброса состоит из D-триггеров DD5.1 и DD5.2 и транзисторов VT2 и VT3. Счет частоты входного сигнала начинается, когда передний фронт эталонного импульса поступает с переключателя SA2.1 на вход D триггера DD5.1, который переключается в «единичное» состояние.

Рис. 1. Блок-схема частотомера:

1 - усилитель-формирователь входного сигнала, 2 - временной селектор, 3 - декадный счетчик, 4 - цифровой индикатор, 5 - формирователь сети, 6 - формирователь эталонных временных интервалов, 7 - устройство управления и сброса, 8 - блок питания.

На вывод 10 DD4.3 временного селектора с триггера DD5.1 (вывод 5) поступает сигнал логической 1 и разрешает проход прямоугольных импульсов входной частоты на вход счетчика DD6 (вывод 4). По истечении выбранного эталонного интервала времени (0,01, 0,1, 1 с) на вход D триггера DD5.1 вновь поступает эталонный импульс, триггер возвращается в исходное состояние, блокируя временной селектор и переключая в «единичное» состояние триггер DD5.2. Начинается процесс индикации частоты входного сигнала на цифровом табло.

На выводе 9 DD5.2 появляется сигнал логической 1, и через резистор R11 начинается процесс заряда конденсатора С5. Как только напряжение на базе транзистора VT2 достигнет напряжения примерно 1,2 В, транзистор откроется и на его коллекторе появится короткий отрицательный импульс, который через МС DD1.3, DD1.4 переключит триггер DD5.2 в исходное состояние. Конденсатор С5 через диод VD2 и микросхему DD5.2 быстро разрядится почти до нуля.

Рис. 2. Принципиальная схема прибора:

DD 1, DD 4 К155ЛАЗ; DD 3 К155ИЕ1; DD 5 К.155ТМ2; DD 6- DD 9 К176ИЕ4; VD 6- VD 9 Д226А, VD 10- VD 13 Д9Б, HG 1- HG 4 ИВ ЗА.

Рис. 3. Внешний вид частотомера.

Р ис. 5. Схема расположения элементов в корпусе частотомера:

1 - сетевой индикатор, 2 - тумблер включения сети, 3 - силовой трансформатор, 4 - держатель предохранителя, 5 - печатная плата, 6 - светофильтр, 7 - переключатель временных интервалов.

Отрицательный импульс сброса на коллекторе VT2 инвертируется транзистором VT3, воздействуя на входы R микросхем DD6-DD9 и сбрасывая показания - индикация результатов измерения прекращается. По приходу фронта следующего эталонного импульса процесс повторяется.

В частотомере применены резисторы МЛТ-0,25, конденсаторы К50-6 и КЛС. Указанные в схеме транзисторы КТ315 и КТ361 (с любым буквенным индексом) заменяются любыми кремниевыми высокочастотными транзисторами соответствующей структуры. Вместо диодов КД522Б можно использовать любые из серии КД521, КД520. Диод ГД511Б можно заменить на Д9.

Микросхемы серии К155 могут быть заменены на аналогичные серии К133. Индикаторы ИВ-ЗА заменяются на ИВ-3. Трансформатор блока питания имеет мощность 5-7 Вт. Напряжение на обмотках: II - 0,85 В (ток 200 мА), III - 10 В (ток 200 мА), IV - 10 В (ток 15 мА). Диодные мосты VD6- VD9 и VD10-VD13 можно запитать от одной 10 В обмотки (ток не менее 220 мА). Транзистор VT4 имеет радиатор 20X30X1 мм, выполненный из двух алюминиевых пластин, которые при помощи винта МЗ и гайки прикреплены к транзистору с двух сторон.

Рис. 4. Печатная плата со схемой расположения элементов.

Частотомер изготовляется с целью замены калиброванной шкалы в генераторе низкой частоты (ГНЧ). Из генератора удален оцифрованный барабан. В окне табло, закрытом прозрачным оргстеклом с зеленым светофильтром, размещены цифровые индикаторы (рис. 3).

Частотомер может быть использован и по своему прямому назначению. Для этого введен переключатель SA1, расположенный на передней панели генератора.

Печатная плата частотомера изготовлена из фольгированного гетинакса толщиной 1,5-2 мм (рис. 4). Соединение индикаторов HG1-HG4 с интегральными микросхемами DD6-DD9 производится со стороны печатных проводников.

Все соединения желательно выполнить одножильным изолированным проводом (например, 0 0,3 мм из телефонного кабеля). Цепи переменного тока - многожильным проводом 0 0,7-1,5 мм.

Рис. 6. Конструкция корпуса: нижняя (1) и верхняя (2) П-образные панели. Отверстия под органы управления сверлятся по месту.

Необходимо обратить внимание на правильную установку цифровых индикаторов HG1 - HG4. Они должны быть размещены в одной плоскости и на одном уровне и отстоять от передней кромки печатной платы на расстоянии 2-3 мм. Резистор R18 и све-тодиод VD6 расположены на передней панели прибора. Вариант расположения узлов в частотомере (без ГНЧ) показан на рисунке 5.

Рис. 7. Схема подсоединения переключателя для измерения периода сигналов.

Корпус прибора с указанием необходимых размеров - на рисунке 6. Он изготовлен из дюралюминия Д16АМ толщиной 1,5 мм. Верхняя и нижняя П-образные половины корпуса соединяются с помощью дюралюминиевых уголков 12Х 12 мм, наклепанных на нижнюю половину корпуса, в которых просверлены отверстия и нарезана резьба МЗ.

Печатная плата крепится к днищу частотомера при помощи винтов МЗ и пластмассовых втулок высотой 10 мм.

У микросхем DD2 и DD3 перед установкой на печатную плату третью и двенадцатую ножки необходимо укоротить до утолщения.

Налаживание прибора начинают с проверки монтажа, далее измеряют напряжения блока питания, которые должны соответствовать указанным на принципиальной схеме.

На цифровом табло высветятся нули. Это говорит о работоспособности частотомера. Переключают SA2 в крайнее правое (по схеме) положение, а на вход частотомера (при помощи перемычки) подают с вывода 11 DD1.2 прямоугольные импульсы частотой 100 Гц. На табло высвечивается число 0.100. В случае другой комбинации цифр, подбирая R2, добиваются правильной работы формирователя сети.

Завершающую настройку изготовленного частотомера производят при помощи генератора, осциллографа и промышленного частотомера, например Г4-18А, С1-65 (Н-313), 43-30.

На вход частотомера (R3) подают сигнал частотой 1 МГц и напряжением 0,02 В. Подбирая резистор R5, добиваются максимального усиления транзистора VT1. Изменяя частоту и амплитуду входного сигнала, контролируют работу частотомера в соответствии с техническими характеристиками, сличая показания с приборами заводского изготовления.

Если необходимо измерять низкие частоты с большой точностью, следует увеличить вр.емя счета. Для этого формирователь эталонных временных интервалов необходимо дополнить еще одним декадным делителем (включив его так же, как DD2 и DD3), увеличив время счета до 10 с.

Можно также измерять не частоту входного, сигнала, а его период. Для. этого следует ввести в частотомер дополнительный переключатель, схема которого показана на рисунке 7.

В. РАСТВОРОВ,

г. Таганрог, Ростовская обл.

«Моделист-Конструктор» 10 1990

OCR Pirat


Первой конструкцией на цифровых ИС, которую изготовляли радиолюбители в 80-90 годах, как правило, были электронные часы или частотомер.
Такой частотомер и сегодня можно применять при градировке приборов, или использовать в качестве отсчетного устройства в генераторах и любительских передатчиках, при налаживании различных радиоэлектронных устройств. Прибор может заинтересовать тех, у кого без дела лежат микросхемы серии К155, либо начинающих знакомиться с устройствами автоматики и вычислительной техники.

Описываемый прибор позволяет измерять частоту электрических колебаний, период и длительность импульсов, а также может работать как счетчик импульсов. Рабочая частота от единиц Герц до нескольких десятков МГц при входном напряжении до 50 мВ. Предельная частота работы счетчиков на интегральных микросхемах К155ИЕ2 - около 15 МГц. Однако следует иметь в виду, что фактическое быстродействие триггеров и счетчиков превышает указанное значение 1,5... 2 раза, поэтому отдельные экземпляры TTL микросхем допускают работу на более высоких частотах.

Минимальная цена младшего разряда составляет 0,1 Гц при измерении частоты и 0,1 мкс при измерении периода и длительности.
Принцип действия частотомера основан на измерении числа импульсов, поступающих на вход счетчика в течение строго определенного времени.


Принципиальная схема показана на рис.1


Исследуемый сигнал через разъем X1 и конденсатор С1 поступает на вход формирователя прямоугольных импульсов.

Широкополосный усилитель-ограничитель собран на транзисторах V1, V2 и V3. Полевой транзистор V1 обеспечивает прибору высокое входное сопротивление. Диоды V1 и V2 предохраняют транзистор V1 от повреждения при случайном попадании на вход прибора высокого напряжения. Цепочкой C2-R2 осуществляют частотную коррекцию входа усилителя.



Транзистор V4, включенный как эмитерный повторитель, согласует выход усилителя-ограничителя с входом логического элемента D6,1 микросхемы D6, обеспечивающей дальнейшее формирование прямоугольных импульсов, которые через электронный ключ поступают на устройство управления на микросхеме D9, сюда же поступают и импульсы образцовой частоты, открывающие ключ на определенное время. На выходе этого ключа появляется пачка импульсов. Число импульсов в пачке подсчитывает двоично-десятичный счетчик, его состояние после закрывания ключа отображает блок цифровой индикации.


В режиме счета импульсов управляющее устройство блокирует источник образцовой частоты, двоично-десятичный счетчик ведет непрерывный счет поступающих на его вход импульсов, а блок цифровой индикации отображает результаты счета. Показания счетчика сбрасываются нажатием кнопки «Сброс».

Задающий тактовый генератор собран на микросхеме D1 (ЛА3) и кварцевом резонаторе Z1 на частоту 1024 кГц. Делитель частоты собран на микросхемах К155ИЕ8; К155ИЕ5 и четырех К155ИЕ1. В режиме измерения точность установки «МГц», «кГц» и «Гц» задается кнопочными переключателямиSA4 и SA5.

Блок питания частотомера (рис.3) состоит из трансформатора Т1, с обмотки II которого после выпрямителя VDS1, стабилизатора напряжения на микросхеме DА1 и фильтра на конденсаторах С4 – С11, напряжение +5V подается для питания микросхем.

Напряжение 170V с обмотки III трансформатора Тр1 через диод VD5 используется для питания газоразрядных цифровых индикаторов Н1..H6.

В формирователе импульсов полевой транзистор КП303Д (V3) можно заменить на КП303 или КП307 с любым буквенным индексом, транзистор КТ347 (V5) -на КТ326, а КТ368 (V6, V7) - на КТ306.

Дроссель L1 типа Д-0,1 или самодельный - 45 витков провода ПЭВ-2 0,17, намотанных на каркасе диаметром 8 мм. Все переключатели типа П2К.


Налаживание прибора сводится к проверке правильности монтажа и измерении питающих напряжений. Правильно собранный частотомер уверенно выполняет свои функции, «капризным» узлом является лишь входной формирователь, настройке которого надо уделить максимум старания. Заменив R3 и R4 переменными резисторами 2,2 кОм и 100 Ом, надо на резисторе R5 установить напряжение примерно 0,1...0,2V. Подав от генератора сигналов на вход формирователя синусоидальное напряжение амплитудой около 0,5V, и заменив резистор R6 переменным резистором с номиналом 2,2 кОм, надо его подстроить так, чтобы на выходе элемента D6.1 появились прямоугольные импульсы. Постепенно понижая входной уровень и повышая частоту, надо подбором элементов R6 и СЗ добиться устойчивой работы формирователя во всем рабочем диапазоне. Возможно, при этом придется подобрать сопротивление резистора R9. В процессе налаживания все переменные резисторы должны иметь выводы длиной не более 1...2 см.


Когда налаживание будет завершено, следует их выпаивать по одному и заменять постоянными резисторами подходящего номинала, каждый раз проверяя работу формирователя.


В конструкции вместо индикаторов ИН-17 можно применить газоразрядные индикаторы ИН-8-2, ИН-12 и т. п.

В формирователе импульсов транзисторы КТ368 можно заменить на КТ316 или ГТ311, вместо КТ347 можно использовать КТ363, ГТ313 или ГТ328. Диоды V1, V2 и V4 можно заменить на КД521, КД522.




Схема и плата в формате sPlan7 и Sprint Layout - schema.zip *


* Данная схема была собрана мной в далеком 1988 году в одном корпусе со звуковым генератором и использовалась как цифровая шкала.

Как самостоятельный прибор оформлен недавно, поэтому возможно, где-то в схему и рисунок печатной платы могла закрасться ошибка..



Список Литературы:

В помощь радиолюбителю №084, 1983 г.

Цифровые Устройства на Интегральных Микросхемах - © Издательство «Радио и связь», 1984.

Журнал «Радио»: 1977, № 5, № 9, № 10; 1978, № 5; 1980, № 1; 1981, № 10; 1982, № 1, № 11; № 12.

Радиолюбительские цифровые устройства. - М.: Радио и связь, 1982.

← Вернуться

×
Вступай в сообщество «outmall.ru»!
ВКонтакте:
Я уже подписан на сообщество «outmall.ru»