Дистанционное управление усилителем мощности. Ctrl-Amp

Подписаться
Вступай в сообщество «outmall.ru»!
ВКонтакте:

С развитием и усовершенствованием микросхем для усилителей звука (как предварительных так и оконечных), возникает желание модернизировать и управление. А лучше всего задействовать для этого контроллер. Данный проект меня очень заинтересовал в плане функциональности, автор схемы регулятора и самой прошивки приложил немало усилий для доведения программы управления до совершенства (за что ему огромное спасибо!). Далее копирую описание автора с небольшими сокращениями.

Принципиальная схема основного блока

Предварительный усилитель с микроконтроллерным управлением на Atmega16 построен по модульному принципу, то есть отдельные модули каждый может выполнить по своему желанию и предпочтениям. Особенно это относится к выходным усилителям мощности, источникам питания, защиты акустических систем. В этом материале мы рассмотрим входной модуль на микросхеме TDA7313 и процессорный блок управления. Микросхема TDA7313 включена по типовой схеме и особенностей не имеет. Питается блок от источника питания напряжением +9 Вольт. Больше этот блок особенностей не имеет. Файлы печатной платы этого и других модулей в архиве на форуме , там же есть принципиальные схемы на подключение клавиатуры, оконечный усилитель и БП.

Основные параметры модуля:

1. Регулировка громкости (16 уровней);
2. Регулировка усиления (4 уровней);
3. Регулировка тембра НЧ (16 уровней);
4. Регулировка тембра ВЧ (16 уровней);
5. Регулировка баланса фронтальных колонок (16 уровней);
6. Регулировка баланса тыловых колонок (16 уровней);
7. LOUDNESS - Вкл/выкл тонконпесации;
8. Режим MUTE;
9. Режим STANDBY;
10. Показ времени в режиме MUTE и STANDBY а также по истечению 10 секунд, когда не было нажатий на клавиатуре и других управляющих воздействий;
11. Управление всеми функциями с клавиатуры, пульта дистанционного управления (ПДУ) ПДУ работает по стандарту RC-5, как одним из самых распространенных;
12. Управление с помощью Валкодера (encoder);
13. Контроль температуры радиаторов или внутренней температуры в корпусе по двум каналам на основе датчиков от DALLAS DS18x20. При превышении установленной температуры контроля включается вентилятор охлаждения.

В модуле применены в основном SMD элементы. Микросхемы в DIP корпусах. Диод VD10 установлен с противоположной стороны платы. Управление усилителем производится с помощью клавиатуры, валкодера и пульта ПДУ. Можно применить любой пульт, который работает по стандарту. Клавиатура построена в виде матрицы из 12 кнопок (4х3):

INPUT1 - выбор 1 канала;
INPUT2 - выбор 2 канала;
INPUT3 - выбор 3 канала;
LOUDNESS - включение/выключение режима тонконпенсации;
MUTE - выключение звука (выключение происходит плавно, а не резко). Повторное нажатие включает звук;
STANDBY - выключение усилителя. Происходит отключение усилителя мощности и его источника питания, процессорный модуль работает в дежурном режиме;
MENU - кнопка для входа в дополнительное меню, в нем можно установить дополнительные параметры, таких как время, дата, температура срабатывания датчиков температуры контроля радиаторов. Повторное нажатие на эту кнопку в этом режиме происходи возврат в основное меню управления усилителем без сохранения параметров. Чтобы новые параметры были сохранены, надо нажать на кнопку SET .
SET - как сказано выше, это сохранения введенных новых параметров в подменю. В главном при нажатии на клавишу SET можно посмотреть температуру радиаторов, информация выводиться в течении 3 сек.
UP/DOWN - переход к предыдущему/следующему пункта меню или субменю;
LEFT/RIGHT - уменьшение/увеличение соответствующего параметра, который отображается на индикаторе.

Основные кнопки отрабатываются программой практически мгновенно, а вот нажатие и отклик на кнопку STANDBY требуется нажатии в течении приблизительно 3 секунд. Кнопок MUTE и LOUDNESS около 1 секунды. Это сделано для исключения срабатывания при случайном нажатии на эти кнопки особенно если используется пульт ДУ. Главное меню программы по управлению усилителем состоит из следующих пунктов:

Volume (Громкость)
Attens (Усиление)
Bass (Тембр НЧ)
Treble (Тембр ВЧ)
Balans F (Баланс фронтальных колонок)
Balans R (Баланс тыловых колонок)

В этом режиме работает также клавиша SET , при нажатии на которую в течение 3 секунд выводятся значения температуры от датчиков. При нажатии на кнопку MENU мы попадем в дополнительное меню для установки параметров времени, даты и максимальной температуры для срабатывания защиты температуры. Это меню состоит из пунктов:

"Set Time: Hour " (установка времени - часы),
"Set Time: Min " (установка времени - минуты),
"Set Time: Sec " (установка времени - секунды),
"Set Date: Day " (установка даты - день),
"Set Date: Mes " (установка даты - месяц),
"Set Date: Year " (установка даты - год),
"Set MAX DS18x20 " (установка температуры срабатывания тепловой защиты).

В этом режиме движение по меню осуществляется клавишами UP/DOWN (и клавишами ПДУ), а регулировка параметра клавишами LEFT/RIGHT (и валкодером). В любом из пунктов, если мы нажмем на клавишу MENU , то мы вернемся в главное меню без записи новых значений, а если нажмем клавишу SET , то с сохранением введенных параметров. Для удобства, автор привел прошивки на английском, русском и украинских языках. Как вариант, для себя решил управлять лишь пультом, поэтому валкодер и клавиатуру собирать и устанавливать не хочу. Плату, что привел автор, делал под себя, так что решил развести свою.

Закончил сборку предусилителя - всё открывается и регулируется. Так как датчиков нет, то и они не определены (в виде черточек в дежурном режиме). Плату развел свою под SMD, но процессор в Dip корпусе, по сему плата под него по размерам индикатора - это основная причина, по которой не выкладываю плату в Lay .

Вторая плата будет самого предварительного усилителя на TDA7313. Третья плата - модуль управления источником питания и дежурный режим. Вот фото:

Пришло время испытаний. Играет супер! Радует глубина регулировки НЧ и ВЧ, бас мягкий, высокие до "циканья" пищалок (хотя с ОМ будет конечно веселее), тонкомпенсация особенно понравилась очень впечатлительным подъёмом на НЧ. В общем по устройству пока могу сказать только одно - сплошные плюсы!

Погоняв с пол дня не обнаружил каких-либо недочётов в прошивке, работа на пульт четкая, В общем если кто решит повторить эту схему, то не пожалеет! Автор схемы - Андрей Дойников . Сборка и испытание - ГУБЕРНАТОР .

Обсудить статью МИКРОКОНТРОЛЛЕРНОЕ УПРАВЛЕНИЕ В УНЧ

Моторизированный потенциометр давно не новость, есть даже готовые устройства в продаже. Цена на него можно сказать «космическая» и не по карману многим радиолюбителям, вроде меня! 🙂
Сама идея очень интересная, ведь такая связь имеет много плюсов — в звук не вносятся помехи от регулировок, легко можно связать с пультом, для дистанционного управления, само устройство можно применить в любом месте, заменив им обычный потенциометр!
Но по мимо плюсов есть и минусы — Для прямой связи потенциометра с валом подойдет только шаговый двигатель, для обычного нужен редуктор! Во время регулировки будет слышен звук мотора, мотором нужно управлять…
Однако при этих минусах пользы от такого типа регулятора все же много, и я дальше расскажу как я это реализовал!

Началось всё с того что у меня скопилось очень много разных моторов, шаговых и обычных:

Нужно было их где-то приспособить)) Шаговики трогать не стал, они нужны будут мне в других целях, а вот обычные решил скрутить с потенциометром для регулировки громкости, так как давно хотел регулировать громкость пультом, к примеру слушая радио на работе или смотря фильм на компьютере.. 🙂

Связать мотор напрямую с потенциометром не получится, мотору может не хватить сил вращать вал потенциометра, или наоборот у мотора будет столько дури что он повернет вал полностью за долю секунды! =)
Для этого мне понадобился редуктор! Но изготовить редуктор самостоятельно было трудно, у меня не было материалов… Тут и пошла в бой фантазия…
Пошел я на рынок-барахолку, прикупил дешевую китайскую инерционную машинку за 10 гривен, снял с неё очень нужную для меня деталь и попробовал связать с потенциометром:

Как видно, моторчик был «врезан» в то самое место где стоял инерционный вал, с него я снял шестеренку и одел на ось моторчика, вышла такая простая конструкция!
Первые тесты были замечательные! Мотор точно поворачивал ручку резистора, но вращал он её все равно сравнительно шустро… Тут то мне и понадобилась схема управления, но о ней позже…
Дальше я откусил кусачками не нужные части оси эдакого редуктора и при помощи надфиля сточил одну часть «под отвертку»:

Крепление получилось очень прочным, китайцы не экономили на материале для оси))
Собственно что вышло в конечном итоге:

Размеры вышли сравнительно не большие… редуктор я закрепил на кусочке текстолита термоклеем (классная штука кстати, очень полезная по хозяйству) а потенциометр просто припаял корпусом к текстолиту!
Дальше занялся схемой управления мотором… Мне нужна была индикация о уровне громкости, так как устройство находилось бы внутри корпуса, нужно же видеть в каком положении находится регулятор, очень не хорошо было бы ночью включить усилитель на максимальной громкости! 🙂

Вышла вот такая вот схемка:

Вариант конечно «сырой» но на практике всё работает очень даже не плохо!
В кратце расскажу как ОНО работает:
На транзисторах собран двенадцати ступенчатый индикатор, который выполняет дву функции — индикатор уровня громкости (когда не нажата клавиша регулировки громкости) и показ состояния громкости на пару секунд после нажатия клавиши громче или тише и переход обратно в режим индикации уровня!
Сама схема управления мотором собрана на таймере «555» который генерирует импульсы для управления моторчиком, связь с мотором происходит с помощью «Н» моста, собранном на мощных транзисторах (какие у меня были такие и использовал, а были у меня только TIP100 и TIP106). Транзисторы в мосту какие использовал я:

Импульсы драйвер генерирует всегда, но для того чтобы выбрать в какую сторону вращать мотор нам нужно замкнуть одну из пар транзисторов, подав единичку на любой из входов (L или R)! Если на эти входы подцепить ИК приемник, как например из статьи о прошлом «Усилителе с дистанционным управлением» то громкость можно регулировать любым пультом! Я дополнительно на корпус вынес две кнопки, ну не всегда же пульт эксплуатировать! 🙂
Возможно нужно будет использовать дополнительный усилитель для входа индикатора уровня (Вход LINE IN), так как на плеере mp3 ему не хватило громкости даже на максимуме чтобы показывать уровень, а вот от компьютера он работал на полную…
Также на схеме есть примерный рисунок как осуществляется подключение этой системы!
По сколько схему собирал с нуля то решил вначале делать всё обвесом… Так выглядел мой «Н» мост и всё устройство в целом:

Страшно конечно, не спорю, но зато работает =))))
Позже я сделал для него печатную плату, которую выложил на форуме… Сразу говорю — я её НЕ проверял, делал на скорую руку и в ней могут быть ошибки! Буду благодарен тому кто проверит её! 🙂

Несмотря на ужасный вид устройство очень даже хорошо работает, плавно регулирует громкость, в сочетании с пультом очень удобно вышло!
Ну и напоследок приведу видео:
На видео может показаться что громкость регулируется резко, это из-за того что я подключил тестовый усилитель (на TDA8563) напрямую через потенциометр к компьютеру! При подключении через темброблок регулировка гораздо плавнее!
Вначале на видео показана индикация состояния громкости, я замыкаю контакт «Громче» и индикация переходит в режим уровня громкости, полоска светодиодов заполняется, через пару секунд когда я отпускаю контакт индикация возвращается в режим показа уровня сигнала (VU Meter). Включаю усилитель, подаю сигнал… Для тестов использовал усилок на TDA8563 и автомобильный динамик, который вибрацией перевернул мне всё на столе! 🙂

В этой статье мы рассмотрим схему электронного регулятора громкости звука с возможностью дистанционного управления и цифровой индикацией уровня.

Рис.1. Передняя сторона устройства


Рис.2. Задняя сторона устройства

Увеличение громкости осуществляется кнопкой или дистанционно с пульта ДУ (инфракрасное управление). Подходит практически любой домашний пульт управления.

Схема устройства представлена на рисунке 3.

Рис.3. Схема электрическая принципиальная

Переключения уровней звука основаны на десятичном счетчике CD4017 (DD1). Данная микросхема имеет 10 выходов Q0-Q9. После подачи питания на схему, на выходе Q0 сразу присутствует логическая единица, светодиод HL1 светится, указывая на нулевой уровень звука. К остальным выходам Q1-Q9 подключены резисторы R4-R12, которые имеют разное сопротивление.
Напомню, что микросхема в один и тот же момент времени выдает сигнал высокого уровня только на одном из своих выходов, а последовательное переключение между ними происходит при подаче короткого импульса на вход (вывод 14).
Исходя из этого, сопротивления в группе резисторов R4-R12 подобраны в порядке убывания (сверху-вниз по схеме), чтобы при каждом переключении микросхемы на базу транзистора VT2 поступало все больше и больше тока, постепенно открывая транзистор.
На коллектор этого транзистора подается сигнал от внешнего УНЧ или источника звука.
Итак, переключая микросхему счетчик, мы, по сути, изменяем сопротивление коллектор-эмиттер и тем самым изменяем громкость звука поступающего на динамик.
Сопротивления резисторов зависят от коэффициента усиления транзистора (h21э). Например, при использовании 2N3904 сопротивление резистора R4 может быть около 3 кОм, чтобы чуть чуть "приоткрыть" транзистор, звук при этом будет на самом тихом уровне. А сопротивление R12 должно быть наименьшим из всей группы (около 50 Ом), чтобы обеспечить режим насыщения и максимальную пропускную способность коллектор-эмиттер, соответственно максимальную громкость данного регулятора.
Мне трудно указать конкретные номиналы R4-R12, так как это еще очень сильно зависит от мощности звукового сигнала, поданного на транзистор, а также от питания. Лучше всего использовать многооборотные подстроечные резисторы и настроить ступени "на слух".

В нижней части схемы представлен узел индикации, основанный на дешифраторе К176ИД2 (DD2). Он предназначен для управления семисегментным индикатором.
На входы дешифратора подается двоичный код, поэтому на диодах VD1-VD15 построен шифратор, который преобразует десятичный сигнал от CD4017 в двоичный код, понятный для К176ИД2. Такая схема на диодах может показаться странной и архаичной, но вполне работоспособна. Диоды следует выбирать с малым падением напряжения, например диоды Шоттки. Но в моем случае использованы обычные кремниевые 1N4001, их видно на рисунке 2.
Итак, сигнал с выхода счетчика поступает не только на базу транзистора, но и на диодный преобразователь, превращаясь в двоичный код. Далее DD2 примет двоичный код и на семисегментном индикаторе отобразится нужная цифра, показывающая уровень звука.
Микросхема К176ИД2 удобна тем, что позволяет использовать индикаторы и с общим катодом, и с общим анодом. В схеме использован второй тип. Резистор R17 ограничивает ток сегментов.
Резисторы R13-R16 стягивают входы дешифратора на минус для стабильной работы.

Теперь рассмотрим верхнюю левую часть схемы. Двухпозиционным переключателем SA1 устанавливается режим управления громкостью. В верхнем (по схеме) положении ключа SA1 громкость изменяется вручную, путем нажатия на тактовую кнопку SB1. Конденсатор C3 устраняет дребезг контактов. Резистор R2 стягивает вход CLK на минус, предотвращая ложные срабатывания.
После подачи питания светится светодиод HL1, а индикатор показывает ноль - это режим без звука (Рисунок 4, сверху).


Рис.4. Отображение уровней на индикаторе

Нажимая на тактовую кнопку, маленькими скачками происходит увеличение громкости динамика от 1-го до 9-го уровня, следующее нажатие снова активирует беззвучный режим.

Если установить переключатель в нижнее (по схеме) положение, то вход DD1 подключается к схеме инфракрасного дистанционного управления, основанной на TSOP приемнике. При поступлении внешнего ИК сигнала на TSOP приемник, на его выходе появляется отрицательное напряжение, отпирающее транзистор VT1. Данный транзистор - любой маломощный, структуры PNP, например КТ361 или 2N3906.
ИК приемник (IF1) рекомендую выбрать с рабочей частотой 36 кГц, так как именно на этой частоте работает большинство пультов (от телевизора, DVD и т.д.). При нажатии на любую кнопку пульта, будет происходить управление громкостью.

В схеме присутствует кнопка с фиксацией SB2. Пока она нажата, вывод сброса RST подключен к минусу питания и счетчик будет переключаться. С помощью этой кнопки можно осуществить сброс счетчика и уровня громкости до нуля, а если оставить ее в отключенном положении, вывод сброса окажется не стянутым на минус и счетчик не будет принимать сигналы с пульта ДУ, и не будет реагировать на нажатия кнопки SB1.


Рис.5. Переключатели, тактовая кнопка и TSOP приемник с обвязкой выведены на отдельную плату

Аудиосигнал на транзистор регулятора я подаю с усилителя на микросхеме PAM8403. Коллектор VT2 подключен к положительному выходу одного из каналов усилителя (R), а его эмиттер к положительному контакту колонки (красный провод на фото). Отрицательный контакт колонки (черно-красный) подключен к минусу используемого канала. Источник звука в моем случае мини mp3 плеер.


Рис.6. Подключение устройства

Почему использованы подстроечные резисторы?
Хочу обратить ваше внимание на фото задней стороны устройства (рис.2). Там видно, что присутствуют три подстроечных резистора R4, R5, R6 на 100 кОм. Я реализовал только лишь три уровня громкости, потому что остальные резисторы (R7-R12) не поместились на плате. Подстроечные резисторы позволяют настроить уровни громкости для разных источников звука, т.к. они отличаются по мощности аудиосигнала.

Недостатки устройства.
1) Регулирование громкости происходит только вверх по уровню, т.е. только громче. Убавлять сразу не получится, придется дойти до 9-го уровня и затем снова вернуться к начальному уровню.
2) Немного ухудшается качество звука. Наибольшие искажения присутствуют на тихих уровнях.
3) Не осуществляет управление стерео сигналом. Введение второго транзистора для еще одного канала не решают проблему, т.к. эмиттеры обоих транзисторов объединяются на минус питания, что приводит к "моно" звуку.

Усовершенствование схемы.
Можно использовать вместо транзистора резисторную оптопару. Фрагмент схемы представлен на рисунке 7.


Рис.7. Фрагмент этой же схемы с оптопарой

Резисторная оптопара состоит из излучателя и приёмника света, соединенных оптической связью. Они имеют гальваническую развязку, а значит управляющая схема не должна вносить помехи в звуковой сигнал, проходящий по фоторезистору. Фоторезистор под действием света излучателя (светодиода или т.п.) будет изменять свое сопротивление и громкость будет изменяться. Элементы оптопары гальванически изолированы, а значит можно управлять двумя или более каналами аудиосигнала (рис.8).


Рис.8. Управление двумя каналами с помощью резисторных оптопар

Резисторы R4-R12 подбираются индивидуально.

Питание устройства можно осуществлять от USB 5 Вольт. При повышении напряжения следует увеличить сопротивление токоограничивающего резистора R17, чтобы не вышел из строя семисегментный индикатор HG1, а также следует увеличить сопротивление R1, чтобы защитить TSOP приемник. Но не рекомендую превышать питающее напряжение выше 7 Вольт.

К данной статье имеется видео, в котором изложен принцип работы, показана собранная на плате конструкция и проведен тест данного устройства.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Компоненты для схемы (рис.1)
DD1 Специальная логика

CD4017B

1 Десятичный счетчик В блокнот
DD2 Микросхема. Дешифратор К176ИД2 1 В блокнот
VT1 Биполярный транзистор

2N3906

1 Любой маломощный PNP В блокнот
VT2 Биполярный транзистор

2N3904

1 Можно КТ3102 В блокнот
VD1-VD15 Диод Шоттки

1N5817

15 В блокнот
С1 47 - 100 мкФ 1 В блокнот
C2 Конденсатор керамический 0.1 мкФ 1 В блокнот
С3 Конденсатор электролитический 1 - 10 мкФ 1 В блокнот
R1 Резистор

100 Ом

1 В блокнот
R2 Резистор 20 - 100 кОм 1 В блокнот
R3 Резистор 100 - 300 Ом 1 В блокнот
R4-R12 Резистор Подобрать 9 Подобрать

Чаще всего в каскадах регуляторов громкости высококачественной звуковоспроизводящей аппаратуры непосредственно в качестве регуляторов используются переменные резисторы, позволяющие постепенно или плавно изменять усиление сигнала. Однако нередко в ламповых усилителях НЧ применяются и ступенчатые регуляторы громкости, выполненные на постоянных резисторах и переключателях.

Самым простым и распространенным схемотехническим решением регулятора громкости лампового УНЧ при выборе плавной регулировки является введение потенциометра с переменным коэффициентом деления напряжения во входную цепь, в межкаскадную цепь или в цепь отрицательной обратной связи усилителя. Перемещением движка этого потенциометра и осуществляется непосредственно регулировка громкости. При этом в качестве регулировочного потенциометра рекомендуется использовать переменные резисторы с так называемой логарифмической характеристикой (характеристика типа В), чтобы обеспечивалось равномерное изменение громкости воспроизводимого сигнала при различных уровнях входных сигналов.

Регулятор громкости с плавной регулировкой при желании можно заменить регулятором со ступенчатой регулировкой. Для этого достаточно произвести соответствующую замену регулирующего элемента, то есть вместо потенциометра установить цепочку последовательно соединенных постоянных резисторов, количество которых и соотношение их номиналов определяет диапазон и закон регулирования.

При выборе схемы регулятора громкости не следует забывать о том, что человеческое ухо имеет различную чувствительность к сигналам разной частоты и громкости. На практике это явление проявляется в том, что при уменьшении громкости воспроизводимого звукового сигнала у слушателя создается впечатление изменения тембра звучания, которое выражается в кажущемся значительно большем уменьшении относительной громкости составляющих низших и высших частот по сравнению с сигналами средних частот. Поэтому в высококачественной звуковоспроизводящей аппаратуре применяются тонкомпенсированные регуляторы громкости, в которых при уменьшении громкости осуществляется необходимый подъем составляющих низших и высших частот для обеспечения равной громкости восприятия. С увеличением громкости требуемый подъем составляющих граничных частот уменьшается. Основу тонкомпенсированных регуляторов громкости обычно составляют потенциометры с одним или двумя отводами, к которым подключаются соответствующие RC-цепочки.

Обычно регулятор громкости используется для изменения уровня выходного сигнала УНЧ с минимальными вносимыми искажениями. При этом чаще всего в качестве такого регулятора применяется переменный резистор, включаемый либо на входе усилителя, либо между предварительным и оконечным каскадами. Вместо переменного резистора, как уже отмечалось, может использоваться и ступенчатый регулятор, выполненный на основе переключателя и кассеты резисторов с разным сопротивлением. Упрощенные принципиальные схемы простейших регуляторов громкости приведены на рис. 1.

Рис.1. Упрощенные принципиальные схемы регуляторов громкости

Чтобы предотвратить возможность перегрузки первой лампы усилителя при большой амплитуде входного сигнала, используется схема подключения регулятора громкости, изображенная на рис. 1, а. В этом случае переменный резистор применяется непосредственно в качестве нагрузки предыдущего устройства. Если же максимальная амплитуда входного сигнала мала, переменный резистор регулятора громкости можно установить в цепи управляющей сетки одного из последующих усилительных каскадов, как показано на рис. 1, б. Преимуществом такого подключения является ослабление воздействия внешних помех, так как на регулятор подается полезный сигнал, уже усиленный до необходимого уровня.

Регулировка уровня громкости в ламповых УНЧ может осуществляться и с помощью специальных каскадов, в которых обеспечивается изменение крутизны характеристики лампы. Принцип действия таких регуляторов громкости основан на том, что при использовании в усилительном каскаде лампы с большим внутренним сопротивлением усиление такого каскада будет пропорционально крутизне ее характеристики (S). Поэтому при использовании лампы с переменной крутизной характеристики для изменения усиления каскада достаточно переместить рабочую точку на участок с другой величиной крутизны. Изменение положения рабочей точки и, соответственно, коэффициента усиления может осуществляться разными способами, например изменением величины напряжения смещения или напряжения на экранной сетке лампы. Упрощенные принципиальные схемы таких регуляторов громкости приведены на рис. 2.

Рис.2. Упрощенные принципиальные схемы регуляторов громкости с изменением крутизны характеристики лампы

Необходимо отметить, что рассмотренные регуляторы громкости, в которых используется принцип изменения крутизны характеристики лампы, могут применяться лишь в первых каскадах УНЧ при относительно малых амплитудах входного сигнала (не более 200 мВ). При более высоких уровнях входного сигнала могут возникнуть значительные нелинейные искажения, вызванные криволинейностью динамической характеристики.

Для регулировки громкости в ламповых усилителях низкой частоты нередко используются регуляторы, которые обеспечивают компенсацию низких частот при малых уровнях входного сигнала. Принципиальная схема одного из таких регуляторов приведена на рис. 3.

Рис.3. Принципиальная схема регулятора громкости с компенсацией низких частот при малых уровнях входного сигнала

На вход каскада подается входной сигнал с фиксированным подъемом уровня низших частот воспроизводимого диапазона. Этот уровень определяется величинами сопротивлений резисторов R1, R2 и R3, образующими входной делитель, а также значением емкости конденсатора С2. С выхода регулятора в цепь сетки лампы через делитель, образованный элементами R7 и С2, поступает сигнал обратной связи. Чем выше уровень громкости, тем значительнее и обратная связь. Величина сопротивления резистора R7 определяет соотношение ослабления низших частот в цепи обратной связи к подъему этих частот во входной цепи. В идеальном случае подбором сопротивления резистора R7 следует добиться того, чтобы ослабление низших частот в цепи обратной связи было равно их подъему во входной цепи. В этом случае форма частотной характеристики сигнала на выходе каскада будет близка к линейной. Приведенные на рис. 3 номиналы элементов рассчитаны на использование одного из триодов лампы 6Н2П.

При уменьшении громкости сигнала с помощью потенциометра R6 уменьшается и значение обратной связи, однако фиксированный подъем низших частот остается прежним. В результате уровень низших частот в выходном сигнале возрастает. При очень малых значениях громкости обратная связь практически отсутствует, а характеристика каскада определяется только параметрами цепочки R1, R3 и С2. При этом подъем низших частот максимальный.

Одним из недостатков данной схемы является то, что триод включен перед регулятором громкости, поэтому при очень сильном входном сигнале он может перегружаться. Однако сигнал с входа подается на управляющую сетку лампы через делитель, который даже на частоте 50 Гц обеспечивает ослабление более чем в 4 раза. Вследствие этого данная схема может работать без искажений при уровне входного сигнала до 4-5 В. Также необходимо отметить, что рассматриваемая схема чувствительна к уровню фильтрации анодного напряжения, поэтому применение фильтра R8C5 в цепи питания анода лампы является обязательным.

При конструировании лампового УНЧ радиолюбители нередко ставят перед собой задачу включения в его состав каскада, с помощью которого можно регулировать громкость дистанционно. Применение в обычных регуляторах выносных пультов с размещенными в них потенциометрами вряд ли можно считать удачным решением, поскольку чаще всего такие пульты соединяются с усилителем с помощью длинных кабелей, что приводит к появлению весьма существенных искажений. Однако существуют разнообразные схемотехнические решения, обеспечивающие регулирование громкости на расстоянии, например, посредством изменения управляющего напряжения постоянного тока, при практическом отсутствии искажений. Принципиальная схема одного из вариантов регулятора громкости с дистанционным управлением приведена на рис. 4.

Рис.4. Принципиальная схема регулятора громкости с дистанционным управлением

Отличительной особенностью рассматриваемого регулятора является включение вместо катодного резистора триода усилительного каскада еще одного триода, который выступает в роли регулирующего элемента. При изменении величины постоянного отрицательного напряжения, подаваемого на сетку второго триода, изменяется величина его сопротивления. В результате меняется глубина отрицательной обратной связи для первого триода. Так, например, при возрастании внутреннего сопротивления второго триода отрицательная связь возрастает, а усиление первого триода снижается. В данной схеме импортный двойной триод типа ЕСС82 можно заменить, например, отечественной лампой 6Н1П.

В высококачественной ламповой звуковоспроизводящей аппаратуре широкое распространение получили регуляторы громкости с тонкомпенсацией. Необходимость применения таких регуляторов громкости объясняется тем, что чувствительность уха человека изменяется в зависимости от частоты и громкости воспринимаемого звукового сигнала. Так, например, лучшая чувствительность соответствует восприятию составляющих средних частот по сравнению с составляющими высших и особенно низших частот. Поэтому при уменьшении громкости у слушателя появляется субъективное ощущение, что одновременно уменьшается уровень составляющих высших и низших частот воспроизводимого диапазона. В результате проведенных в этой области исследований были составлены определенные зависимости, которые получили название кривых равных громкостей.

Чтобы при разных уровнях громкости все частотные составляющие воспроизводимого сигнала воспринимались одинаково, в высококачественной звуковоспроизводящей аппаратуре применяются регуляторы громкости, в которых при уменьшении громкости осуществляется необходимый подъем составляющих низших и высших частот, а с увеличением громкости подъем составляющих граничных частот уменьшается. Такие регуляторы называют тонкомпенсированными или частотно-зависимыми. Естественно, разработчики стремятся к тому, чтобы характеристики тонкомпенсированных регуляторов громкости были как можно ближе к кривым равной громкости.

Самым простым вариантом построения частотно-зависимого регулятора громкости является объединение непосредственно регулятора громкости и регулятора тембра с использованием спаренных переменных резисторов. Принципиальные схемы таких регуляторов громкости приведены на рис. 5, а и 5, б. Нередко в тонкомпенсированных регуляторах громкости используются потенциометры с одним или с двумя отводами, к которым подключаются соответствующие RC-цепочки. Принципиальная схема одного из вариантов такого регулятора громкости приведена на рис. 5, в.

Рис.5. Принципиальные схемы простых тонкомпенсированных регуляторов громкости

Токомпенсированный регулятор громкости может иметь и ступенчатую регулировку. К достоинствам таких регуляторов, помимо отсутствия потенциометра соответствующей конструкции, следует отнести возможность выбора значительно более широкого диапазона регулировки. Принципиальная схема одного из вариантов входного каскада лампового УНЧ с таким регулятором приведена на рис. 6.

Рис.6. Принципиальная схема тонкомпенсированного регулятора громкости со ступенчатой регулировкой

Тонкомпенсация в регуляторах громкости может быть реализована и с помощью специальных фильтров. Принципиальная схема регулятора с фильтром тонкомпенсации приведена на рис. 7.

Рис.7. Принципиальная схема регулятора громкости с фильтром тонкомпенсации

В рассматриваемой схеме фильтр тонкомпенсации представляет собой двойной Т-мост, коэффициент передачи которого для составляющих средних частот воспроизводимого диапазона меньше, чем коэффициент передачи для составляющих низших и высших частот. В режиме максимальной громкости движок потенциометра R4 должен находиться верхнем по схеме положении, при этом фильтр замкнут накоротко и не влияет на форму частотной характеристики. Для уменьшения громкости движок потенциометра R4 следует перемещать вниз, при этом уменьшается шунтирующее действие верхней части данного потенциометра на фильтр. В результате через фильтр начинают проходить составляющие определенных частот в соответствии с его частотной характеристикой. Поскольку составляющие средних частот ослабляются этим фильтром в большей степени, чем составляющие крайних частот, изменение частотной характеристики усилителя происходит по зависимости, близкой к кривым равной громкости. Потенциометр R4 должен иметь логарифмическую характеристику (тип В).

Немного истории

Данная конструкция появилась после того, как я собрал известный усилитель OM 2.5. Естественно, встал вопрос выбора регулятора громкости, защиты и прочих сервисных функций. Конечно, еще хотелось иметь цифровой вход и дистанционное управление, но это уже казалось совсем недоступным космосом. Ни программированием контроллеров, ни проектированием электронных схем я до этого не занимался. Однако, как говорится, дорогу осилит идущий, и на макетке поселился контроллер Atmega16 с микросхемой регулятора громкости PGA2311. В итоге процесс меня так увлек, что очень трудно было закончить проект. Пока оставалась свободная память и ноги контроллера, появлялись идеи по расширению функций и добавлению новых модулей. Платы ко всем модулям первоначально разводились в DipTrace и изготавливались собственноручно с помощью фоторезиста. Потом часть плат я попробовал заказать на производстве. Поэтому на фото присутствует сборная солянка из синих самодельных и зеленых заводских плат. Итак, в этой статье я постарался описать, что в итоге у меня получилось.

Функции системы.

  • Мягкий старт, задержка настраивается от 0 до 30 сек.
  • Задержка включения АС, настраивается от 0 до 30 сек.
  • ДУ стандарта NEC c настройкой пульта из системы меню
  • Коммутация АС c помощью плат защиты: зоны A/B (кнопка, ДУ), левая/правая (ДУ) или просто вкл/выкл.
  • Управление входным селектором на 4 входа (кнопки, ДУ)
  • Управление громкостью и балансом с помощью микросхемы PGA23XX или релейным РГ Никитина (энкодер, ДУ)
  • Управление темброблоком Матюшкина c релейной регулировкой НЧ и ВЧ (энкодер, ДУ)
  • Управление - передача команд стоп/пуск/перемотки/треки (ДУ)
  • Термо-контроль на цифровом датчике LM75, один или два канала, выключение при перегреве, включение вентилляторов
  • Кнопки включения, переключения АС, четыре кнопки селектора входов и Mute
  • Регулировка яркости подсветки экрана (ДУ)
  • Экранные заставки: гашение экрана, индикатор уровня и анализатор спектра

Состав и конфигурация системы.

Система состоит из контроллера с символьным дисплеем 4x20, устанавливаемого на лицевую панель, и нескольких исполнительных модулей. Дисплей устанавливается параллельно плате контроллера на четыре стойки и соединяется с ним разъемами PLS-PBS, получается достаточно компактный "бутерброд" высотой 12мм. Все подключения осуществляются по периметру платы контроллера с помощью угловых разъемов XH.

Модули осуществляют необходимые регулировки/коммутацию и устанавливаются в корпус усилителя с учетом минимизации длины сигнальных цепей:

  • Регулятор громкости на базе PGA23XX c входным селектором на 4 входа и разъемом для подключения USB-цапа PCM2705
  • Регулятор громкости Никитина
  • Входной селектор на 4 входа (для использования с РГ Никитина)
  • Регулятор тембров Матюшкина c релейной регулировкой НЧ и ВЧ
  • Защита АС от постоянного напряжения c коммутацией двух зон A/B
  • Термо-датчики
  • Блок дежурного питания с входным фильтром и управлением мягким стартом

Конфигурация используемых модулей определяется dip-переключателем на плате контроллера. Она считывается при подаче питания на контроллер и определяет алгоритм дальнейшей работы системы:

Регуляторы громкости, темброблок и селектор входов подключаются к шине контроллера SPI последовательно, для этого на платах модулей присутствуют разъемы Control IN и Control Out. При использовании РГ Никитина, для регулировки баланса можно подключить два таких модуля. Это позволяет достаточно гибко конфигурировать систему управления под конкретное устройство. Диапазон и шаг регулировки громкости у PGA23xx и РГ Никитина могут существенно различаться, поэтому они задаются в меню настройки системы. Важно - прошивка не проверяет на адекватность введенные значения, поэтому не следует задавать максимальную громкость +32db у РГ Никитина. Все возможные варианты подключений модулей к шине SPI:

  • контроллер ->
  • контроллер -> ТБ Матюшкина -> РГ на PGA23XX с входным селектором и ЦАПом
  • контроллер -> РГ Никитина -> селектор входов
  • контроллер -> РГ Никитина -> РГ Никитина -> селектор входов
  • контроллер -> ТБ Матюшкина -> РГ Никитина -> селектор входов
  • контроллер -> ТБ Матюшкина -> РГ Никитина -> РГ Никитина -> селектор входов

Термо-датчики подключаются к контроллеру по шине I2C. Их наличие и количество так же задается dip-переключателем. Возможны три варианта - термо-контроль отключен, используется один датчик или два датчика для каждого канала усилителя. Если термо-контроль включен, можно настроить максимальную температуру, при достижении которой устройство будет выключено. Так же настраиваются температуры включения и выключения обдува. При использовании двух термо-датчиков, можно организовать независимый обдув каждого канала.

Индикация.

Вся информация выводится на символьный дисплей 4x20 на широко известном контроллере HD44780. В первой строке индицируется состояние коммутатора АС. В этой же строке отображается температура радиаторов, полученная с термо-датчиков, когда она превысит температуру включения обдува. Вторая строка отображает ослабление РГ в децибелах. Третья строчка - состояние баланса. При регулировке НЧ или ВЧ, их состояние так-же выводится в этой строке вместо баланса. Последняя строка отображает имена входов и текущий вход.

Еще один орган индикации - светодиод. Он светится, когда система подключена к сети и находится в дежурном режиме. При включении он гаснет и индицирует миганием прием команд с пульта ДУ.

Если в течении определенного времени никакие органы управления не используются, экран может переключаться в режим заставки. Самая простейшая - уменьшение яркости подсветки экрана. Если к соответствующим входам контроллера подключить входной или выходной аудио-сигнал, можно использовать заставки «Индикатор уровня» или « Анализатор спектра» на базе преобразования Фурье.

Управление.

Для управления используются кнопки без фиксации, замыкающие соответствующие входы контроллера на землю, энкодер с кнопкой, пульт ДУ с протоколом NEC. Энкодер управляет регулировкой громкости. При нажатии на его кнопку, энкодер последовательно переключается на регулировку баланса/тембра НЧ/тембра ВЧ. При этом на экране мигают символы, соответствующие текущему режиму. На кнопках и энкодере реализован только минимальный набор команд, полный функционал из 26 команд доступен только с пульта. Часть функций, типа изменения громкости, поддерживает прием команд автоповтора от пульта (когда кнопка пульта удерживается нажатой) . Для функций, типа Вкл/Выкл, выполнение автоповтора намеренно отключено - для повторения команды необходимо повторно нажать кнопку пульта.

Минимальный необходимый комплект для запуска и настройки системы - кнопка включения, энкодер и пульт ДУ. При подаче питания на контроллер, он будет находиться в дежурном режиме. Длительное нажатие на кнопку включения (от 2 сек.) переводит контроллер в режим настройки. При этом включается только экран, реле софт-старта остаются выключенными. Перемещение по меню настройки и изменение значений параметров осуществляется вращением энкодера. Для выбора пунктов меню, входа в редактирование и подтверждения выбора, необходимо нажать на кнопку энкодера.

Коды команд пульта ДУ в соответствующем подменю настройки можно просто ввести, если вы их знаете. Но проще их прочитать с имеющегося пульта. Для этого необходимо войти в редактирование кода нужной команды и нажать на соответствующую кнопку пульта. Если контроллер смог принять команду, он мигнет светодиодом дежурного режима и впишет код в поле редактирования. Для подтверждения кода останется только нажать на энкодер. Все настраиваемые параметры и команды приведены ниже в таблице:

System Общие настройки системы
Lcd Brigtness Яркость дисплея, 0-16
Speaker Delay Задержка включения АС, 0-30 сек.
SS Delay Длительность Софт-старта, 0-30 сек.
ScreenSaver Заставка: off-отключена, LcdOff-снижение яркости экрана, Level-индикатор уровня, Spektr-спектроанализатор
SaverDelay Время включения заставки: 5-100 сек.
Volume Настройка регулировок громкости и баланса.
Volume Min Минимальная громкость: -94db - -64db
Volume Max Максимальная громкость: -32db - -32db
Volume Step Шаг регулировки громкости: 1-4db
Balance Диапазон регулировки баланса: 4-16db
Selector Выбор имен входов, отображаемых на экране
In1 Имя входа 1
In2 Имя входа 2
In3 Имя входа 3
In4 Имя входа 4
TermoControl Настройка термоконтроля
Power OFF Температура выключения: 60-90 градусов
Cooler ON
Cooler OFF Температура выключения обдува: 40-70 градусов
Remote Коды пульта ДУ
System Код системы пульта, общий на все команды
On Включение/выключение
Enter Аналог нажатия на кнопку энкодера
Vol+ Увеличение громкости
Vol- Уменьшение громкости
BalLeft Баланс влево
BalRight Баланс вправо
Bass+ Увеличить НЧ
Bass- Уменьшить НЧ
Treb+ Увеличить ВЧ
Treb- Уменьшить НЧ
In1 Выбор входа 1
In2 Выбор входа 2
In3 Выбор входа 3
In4 Выбор входа 4
In+ Следующий вход
In- Предыдущий вход
SpeakerNext Следующая АС. Переключение производится в зависимости от конфигурации, On->Off или A->B->Off
SpeakerPrev Предыдущая АС. Переключение производится в зависимости от конфигурации, Off->On или Off->B->A
Speaker L/R Переключение АС правая/левая/обе
DacPlayPause HID-команда для USB DAC - воспроизведение/пауза
DacStop HID-команда для USB DAC - стоп
DacNext HID-команда для USB DAC - следующий трек(короткое нажатие)/перемотка вперед(долгое нажатие)
DacPrev HID-команда для USB DAC - предыдущий трек(короткое нажатие)/перемотка назад(долгое нажатие)
Bright+ Увеличение яркости дисплея
Bright- Уменьшение яркости дисплея
Mute Временное уменьшение громкости до Volume

Схема контроллера

Питание осуществляется через защитный диод D1 и стабилизатор на 5в U1. Ключи Q1 и Q2 управляют реле мягкого старта. R9 регулирует контрастность дисплея, для экрана с синей подсветкой на третьей ноге разъема X9 нужно установить напряжение около 0.85-0.9В. Q3 является ключом ШИМ-регулировки яркости подсветки дисплея.

Все кнопки и dip-переключатель конфигурации S1 подключены к контроллеру по шине I2С с помощью расширителей портов PCF8574 (U3, U4). Нажатие любой кнопки вызывает прерывание на ноге PB2 Атмеги и, как следствие, опрос U3 на предмет кода нажатой кнопки. Энкодер(х6) и ИК-приемник(PH1) так же подключены на ноги контроллера, поддерживающие внешние прерывания - PD2 и PD3.

Операционный усилитель U5 используется для подачи аналогового сигнала правого и левого каналов на входы АЦП. На основе данных, полученных от АЦП, реализуются функции индикатора уровня и спектроанализатора. Входы АЦП работают с сигналом в диапазоне 0-5в, поэтому аудиосигнал нужно усилить/ослабить до амплитуды 2.5в и добавить постоянную составляющую 2.5в. Коэфициент усиления определяется R15/R19 и R16/R20. R17 и R18 обеспечивают необходимое смещение на 2.5в. U5 должен быть Rail to Rail по входу и выходу и работать при питании 5в. При настройке резисторами R13, R14 необходимо добиться максимально возможной амплитуды аналогового сигнала на PA6,PA7 (U2) без признаков клипа.

Прошивка, Фьюзы, Моделирование

Для прошивки используется разъем X2. При прошивке контроллера необходимо обязательно отключить от разъема X3 любые модули. После прошивки программы, обязательно заливается файл с данными Eeprom. При установке фьюзов, необходимо отключить JTAG отладчик (JTAGEN) и установить частоту 8 МГц (CKSEL0, CKSEL1, CKSEL2, CKSEL3), все остальное по умолчанию.

К статье прилагается модель контроллера в Proteus 8. С ее помощью можно ознакомиться с контроллером, протестировать функции, индикацию, управляющие сигналы, не собирая устройство. Модель цифрового термометра LM75 я найти не смог, поэтому используется другой подобный датчик и прошивка с учетом этой замены. Для эмуляции пульта ДУ NEC была сделана простая модель и прошивка, модель эмулятора энкодера я нашел в открытом проекте . Прошивки этих моделей лежат вместе с файлом Протеуса.

Термо-датчик


Термо-датчики прижимаются к радиаторам стороной с микросхемой. С другой стороны платы перемычками задаются адреса датчиков на шине I 2 C. Адрес левого канала - 000, правого - 001. Если используется один датчик, задается адрес левого канала. Важное ограничение - выходы включения обдува OS слаботочные, могут пропустить ток до 100 мкА. Это надо учитывать, при подключении к контроллеру ключей, управляющих вентиляторами.


Регулятор громкости Никитина

Использована схема, инверсная относительно оригинальной - при выключенных реле ослабление регулятора максимально. Сдвиговый регистр U1 получает от контроллера (X9) данные с громкостью. Его выходы усилены ключами дарлингтона c защитными диодами U2, т.к. регистр 74HC595 не может обеспечить необходимый ток на все реле. Кроме того, благодаря ULN2003A, можно использовать реле не обязательно на 5в. Обмотки реле могут питаться от платы контроллера, но лучше их питать от отдельного источника, для этого предусмотрен разъем X11. Если используются реле с обмотками более 5в, внешнее питание является единственным вариантом. Выбор источника питания задается перемычками J1 и J2.

При установке всех реле, обеспечивается ослабление до -128 db и шаг регулирования - 1db. Если достаточно ослабления -64db, реле K7 можно не устанавливать. При этом выходной сигнал снимается с разъемов X6,X8. Можно увеличить шаг регулирования до 2db, для этого достаточно не устанавливать реле K1 и входной сигнал подавать на разъемы X2,X4.

Резисторы R15 и R16 нужны для согласования выходного сопротивления регулятора с входным сопротивлением усилителя. R15 устанавливается, если используется выход -64db, R16 - для выхода -128db. Номинал резисторов определяется, исходя из выходного сопротивления РГ 10 кОм и величины входного сопротивления нагрузки. Если не используется селектор входов, необходимо установить резисторы R20,R21,R22 для соединения цифровой и аналоговой земли. При наличии селектора входов, соединять земли лучше на его плате.

Схема управления селектором входов аналогична РГ Никитина, но с некоторыми упрощениями. Так как в любое время включено только одно реле, тока регистра U1 достаточно, и от ULN2003 было решено отказаться. Поэтому в селекторе входов могут использоваться только реле на 5В. При использовании обычных реле, запаивается перемычка J1. Перемычка J2 сделана для экспериментов с бистабильными реле на будущее.

На входной селектор может устанавливаться РГ Никитина. При этом аналоговые входы/выходы и шина управления соединяются с помощью разъемов PLS-PBS. Для этого на селекторе присутствуют два выхода на канал, соответствующие входам РГ Никитина с шагом регулирования 1db и 2db. R1, R2, R3 соединяют аналоговые и цифровую землю. Перемычка на плате J3 позволяет соединить земли с корпусом устройства через металлизированное крепежное отверстие на плате.

В оригинальной схеме ТБ Матюшкина высокие частоты регулируются переменным резистором. Это не укладывалось в концепцию моей конструкции, поэтому резистор был заменен на релейный делитель. Но нужно было сократить количество реле, чтобы регулировку НЧ, ВЧ и включение директа вписать в 7 ног ULN2003. Схему коммутации на трех реле, вместо четырех, я позаимствовал на . Для минимизации платы использованы лавсановые конденсаторы Epcos на 63в c шагом ножек 5мм.

Схема управления переключением реле полностью аналогична РГ Никитина. Единственное дополнение - выход X4 Direct для внешнего реле обхода темброблока. Реле Direct включается, когда все тембры выставлены в 0. Дополнительной команды включения Direct у контроллера пока не предусмотрено, но ее не трудно добавить.



Это первый модуль, с которого началась разработка контроллера. PGA2311 (U2) по управлению представляет из себя два восьмиразрядных сдвиговых регистра, включенных последовательно. Каждый регистр управляет громкостью своего канала. У микросхемы есть выход данных, к которому был подключен еще один обычный регистр U3. Он управляет четырьмя входными реле. Оставшиеся четыре ноги регистра через делитель на 3V передают команды USB цапу - воспр./пауза, стоп, перемотка вправо/влево, пред./след. трек. Это дает возможность с пульта усилителя управлять воспроизведением плей-листов на компьютере, что достаточно удобно. Аналоговое и цифровое питание раздельное и осуществляется от трех стабилизаторов - U4, U5, U6. На плате установлены диодные мосты и фильтры, нужно только подключить трансформатор. Вместо PGA2311 может быть применена микросхема PGA2310, для этого достаточно заменить стабилизаторы U4 и U5 на аналогичные с выходным напряжением 12V. Важная особенность - цифровое и аналоговое питание необходимо подавать синхронно. Конструкция модуля предполагает установку на заднюю стенку усилителя.

Вместо первого аналогового входа можно установить USB Цап PCM2706. Все материалы по нему я выкладывал на . В таком случае вместо разъема X1 RS-813 устанавливается разъем на 3 входа RS-613. На операционном усилителе U1 сделан дополнительный фильтр для ЦАПа. Кроме того, он усиливает выход ЦАПа до стандартных 1.2в.

Измерения

Качество работы модулей после сборки проверялось с помощью измерений программой . В качестве звуковой карты использовалась EMU-0404. Благодаря этому я смог обнаружить и исправить некоторые ошибки в разводке плат. Не буду загромождать статью картинками с результатами измерений, они приложены к файлам проекта. В общем можно сказать, что шумы и гармоники модулей лежат на грани измерительных возможностей EMU-0404.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Контроллер
U1 Линейный регулятор

LM7805

1 В блокнот
U2 МК AVR 8-бит

ATmega16

1 В блокнот
U3, U4 ИС I2C интерфейса

PCF8574A

2 В блокнот
U5 Операционный усилитель

LMC6482QML

1 В блокнот
Q1, Q2 Биполярный транзистор

MMBT3904

1 В блокнот
Q3 Биполярный транзистор

BC807

1 В блокнот
R1, R2 Резистор

1.8 кОм

1 SMD 1206 В блокнот
R3, R4, R5, R17, R18, R19, R20, R21, R22 Резистор

10 кОм

9 SMD 1206 В блокнот
R6, R8 Резистор

100 Ом

2 SMD 1206 В блокнот
R9 Резистор подстроечный

10 кОм

1 3296x В блокнот
R10, R11 Резистор

4.7 кОм

2 SMD 1206 В блокнот
R12 Резистор

10 Ом

1 SMD 1206 В блокнот
R13, R14 Резистор подстроечный

47 кОм

2 3296x В блокнот
R15, R16 Резистор

5.1 кОм

2 SMD 1206 В блокнот
С1, C2, C3, C4, C5, C6, C7 Конденсатор 10 мкф 7 SMD 1206 В блокнот
D1 Диод SMA4007 1 SMA В блокнот
PH1 ИК-приемник TSOP34838 1 38мгц 2.5 мм, 1-Out, 2-Gnd, 3-Vs В блокнот
S1 DIP-переключатель DS1040-08RT 1 В блокнот
X1, X6 Разъем угловой S4B-XH-A 2 XH 2.5 мм, 4 контактa В блокнот
X2 Вилка штыревая PLS-6R 1 2.54мм 1х6 В блокнот
X3, X11, X12 Разъем угловой S5B-XH-A 3 XH 2.5 мм, 5 контактов В блокнот
X4, X5, X7, X10, X13 Разъем угловой S3B-XH-A 5 XH 2.5 мм, 3 контактa В блокнот
X8 Вилка штыревая PLS-9R 1 2.54мм 1х9 В блокнот
X9 Гнездо на плату PBS-16 1 2.54мм 1х16 В блокнот
Дисплей WH2004 1 HD44780 В блокнот
Термо-датчик
U1 Датчик температуры

LM75AD

1 В блокнот
C1 Конденсатор 10 мкф 1 SMD В блокнот
R1 Резистор

100 кОм

1 SMD 1206 В блокнот
U1 Сдвиговый регистр

SN74HC595

1 В блокнот
U2 Составной транзистор

ULN2003

1 В блокнот
R1 Резистор

1.1 кОм

2 SMD 1206 В блокнот
R2 Резистор

82 кОм

2 SMD 1206 В блокнот
R3 Резистор

2 кОм

2 SMD 1206 В блокнот
R4 Резистор

36 кОм

2 SMD 1206 В блокнот
R5 Резистор

3.6 кОм

2 SMD 1206 В блокнот
R6 Резистор

16 кОм

2 SMD 1206 В блокнот
R7 Резистор

6.2 кОм

2 SMD 1206 В блокнот
R8 Резистор

6.8 кОм

2 SMD 1206 В блокнот
R9 Резистор

8.2 кОм

2 SMD 1206 В блокнот
R10 Резистор

1.8 кОм

2 SMD 1206 В блокнот
R11 Резистор

9.1 кОм

2 SMD 1206 В блокнот
R12 Резистор

240 Ом

2 SMD 1206 В блокнот
R13 Резистор

10 кОм

2 SMD 1206 В блокнот
R14 Резистор

6.2 Ом

2 SMD 1206 В блокнот
R15 Резистор * 2 SMD 1206 В блокнот
R16 Резистор * 2 SMD 1206 В блокнот
R17 Резистор

100 кОм

1 SMD 1206 В блокнот
R18, R19 Резистор

0 Ом

2 SMD 1206 В блокнот
R20, R21, R22 Резистор

15 Ом

3 SMD 1206 В блокнот
С1 Конденсатор 10 мкф 1 SMD 1206 В блокнот
K1, K2, K3, K4, K5, K6, K7 Реле G6H-2F 7 TQ2SA или аналогичные В блокнот
X1, X2, X3, X4, X5, X6, X7, X8, X11 Разъем B2B-XH-A 5 XH 2.5 мм, 2 контакта В блокнот
X9 , X10 Разъем B5B-XH-A 2 XH 2.5 мм, 5 контактов В блокнот
U1 Сдвиговый регистр

SN74HC595

1 В блокнот
D1, D2, D3, D4 Выпрямительный диод

PMLL4148L

4 В блокнот
R1, R2, R3 Резистор

10 Ом

3 SMD 1206 В блокнот
С1 Конденсатор 10 мкф 1 SMD1206 В блокнот
K1, K2, K3, K4 Реле G6H-2F 4 TQ2SA 5в или аналогичные В блокнот
X1, X2, X3, X4 Разъем PBS-2 3 2.54мм 1х2 В блокнот
X5 Разъем PBS-5 1 2.54мм 1х5 В блокнот
U1 Сдвиговый регистр

SN74HC595

1 В блокнот
U2 Составной транзистор

ULN2003

1 В блокнот
R1 Резистор

100 кОм

1 SMD 1206 В блокнот
R2, Rl20, Rr20 Резистор

0 Ом

3 SMD 1206 В блокнот
R3, R4, R5 Резистор

10 Ом

3 SMD 1206 В блокнот
Rl1, Rr1 Резистор

7.5 кОм

2 SMD 1206 В блокнот
Rl2, Rr2 Резистор

680 Ом

2 SMD 1206 В блокнот
Rl3, Rr3 Резистор

940 Ом

2 SMD 1206 В блокнот
Rl4, Rr4 Резистор

6.8 кОм

2 SMD 1206 В блокнот
Rl5, Rr5 Резистор

820 Ом

2 SMD 1206 В блокнот
Rl6, Rr6 Резистор

1.3 кОм

2 SMD 1206 В блокнот
Rl7, Rr7 Резистор

2.7 кОм

2 SMD 1206 В блокнот
Rl8, Rr8 Резистор

10 кОм

2 SMD 1206 В блокнот
Rl9, Rr9 Резистор

1.5 кОм

2 SMD 1206 В блокнот
Rl10, Rr10 Резистор

1.8 кОм

2 SMD 1206 В блокнот
Rl11, Rr11 Резистор

3 кОм

2 SMD 1206 В блокнот
Rl12, Rr12 Резистор

14 кОм

2 SMD 1206 В блокнот
Rl13, Rr13 Резистор

1 кОм

2 SMD 1206 В блокнот
Rl14, Rr14 Резистор

4.7 кОм

2 3296W В блокнот
Rl15, Rl16, Rl17, Rr15, Rr16, Rr17 Резистор

16 кОм

6 SMD 1206 В блокнот
Rl18, Rr18 Резистор

36 кОм

2 SMD 1206 В блокнот
Rl19, Rr19 Резистор

12 кОм

2 SMD 1206 В блокнот
C1 Конденсатор 10 мкф 1 SMD 1206

← Вернуться

×
Вступай в сообщество «outmall.ru»!
ВКонтакте:
Я уже подписан на сообщество «outmall.ru»