Металл ni. Никель (Ni): все о минерале и его роли в жизни человека

Подписаться
Вступай в сообщество «outmall.ru»!
ВКонтакте:

С серебром – то сегодня промышленностью на постоянной основе используется чуть ли не вся таблица элементов Менделеева.


Одно из почётных мест в списке наиболее важных для металлургии элементов занимает никель – серебристый, очень блестящий металл, обладающий рядом полезнейших качеств.

Что такое никель?

История не сохранила имени человека, открывшего никель, так как этот металл известен людям очень давно. Первые его образцы были найдены в содержимом метеоритов, поэтому представляли собой огромную редкость. Они использовались для изготовления талисманов и «заколдованного» оружия, которое никогда не покрывалось ржавчиной.

Никелевая руда в Средневековье часто встречалась в медных рудниках Саксонии, но тогда люди не умели выплавлять из неё металл. Немецкие рудокопы называли её «купферникелем», или ложной медью, и презрительно отбрасывали. Бытовало поверье, что зловредный гном Старый Ник превращает медную руду в негодные камни. Выделить из никелевой руды чистый металл сумел в 1775 году шведский естествоиспытатель А. Кронстедт, но найти ему применение тогда не смогли.

Обладая хорошей пластичностью, никель легко куётся и практически не окисляется под действием воздуха или воды, покрываясь тонкой оксидной плёнкой, которая защищает его от дальнейшего окисления. Но если измельчить металл до состояния порошка, то при контакте с воздухом он легко вспыхнет, окисляясь с выделением большого количества тепла. Температура его плавления достаточно высока и достигает 1455 градусов Цельсия.


Это металл серебристого цвета с лёгкой желтизной, обладающий сильным блеском и легко полирующийся. Ему присущи ферромагнитные качества, т.е. он притягивается магнитом. Высокая твёрдость и коррозионная стойкость сделали его чрезвычайно востребованным современной промышленностью.

Для чего нужен никель?

Основная сфера применения никеля сегодня – это производство высоколегированных нержавеющих сталей. Добавляя в расплав железа никель и хром, металлурги выплавляют чрезвычайно прочные, но в то же время пластичные сплавы с высокой коррозионной стойкостью. Поверхность металла получается блестящей и хорошо поддаётся полировке, причём сплавы сохраняют свои качества при длительном и многократном нагревании до высоких температур.

Нержавеющая и термостойкая сталь необходима в ряде отраслей промышленности, в первую очередь – в пищевом производстве, нефтехимии, авиастроении, автомобильном производстве, станкостроении и т.д. Военная промышленность выпускает броневую сталь, содержащую никель.

Не менее востребованы никельсодержащие стали в строительной отрасли. Из них изготавливают интерьерные элементы зданий – перила, ограждения, балюстрады, элементы входных групп. В мебельной промышленности сегодня используются профилированные элементы из нержавеющей полированной стали, фурнитура, мебельные механизмы и т.д. Ещё одна широчайшая сфера применения никеля – изготовление из нержавеющей стали разнообразной домашней утвари (посуды, столовых приборов и др.) и бытовых приборов.

Часто никель используется для защиты чугунных и стальных изделий от коррозии в качестве покрытия. Никелирование производится химическим и гальваническим способами. Никелированные конструкционные детали необходимы в химической промышленности, в производстве щелочных аккумуляторов для автотехники, так как этот металл устойчиво к воздействию кислотных и щелочных растворов. Никель и его соединения нередко выступают катализаторами в ряде химических процессов. Нагревательные элементы, содержащие никель (алюмелевые, нихромовые, пермаллой, монель и т.д.), обладают высокой тепловой эффективностью и используются как в промышленном оборудовании, так и в бытовой технике.


Благодаря яркому блеску и высокой твёрдости никель во многих государствах входит в состав монет. В отличие от более мягких серебра и меди, никельсодержащие монеты используются в течение десятков лет, практически не истираясь. Конечно, блеск понемногу тускнеет, но даже старые монеты обладают прекрасно сохранившимся тиснением.

Открытие долго оспаривалось: современники полагали, что никель - это не самостоятельный металл, а сплав уже известных металлов с мышьяком и серой. Кронстедт настаивал на индивидуальности никеля, ссылаясь в качестве «вещественных доказательств», в частности, на зеленую окраску его соединений и легкость взаимодействия этого «полуметалла» с серой . Кронстедту приходилось бороться не только с физико-химическими, но и с астрологическими доводами своих оппонентов. «Число металлов превосходит уже число планет, в солнечном круге находящихся, - писал Кронстедт, - поэтому ныне размножения числа металлов опасаться не надлежит».

Но Кронстедт умер в 1765 г., так и не дождавшись признания своего открытия. И даже через 10 лет после его смерти во Французской энциклопедии, высшем своде знаний эпохи, было напечатано: «Кажется, что еще должны быть проведены дальнейшие опыты, чтобы убедить пас, есть ли этот королек «никеля», о котором говорит г. Кронстедт, особый полуметалл или его скорее следует считать соединением железа , мышьяка, висмута , кобальта и даже меди с серой».

В том же 1775 г. соотечественник Кронстедта химик и металлург Т. Бергман опубликовал свои исследования, которые убедили многих в том, что никель действительно новый металл. Но окончательно споры улеглись лишь в начале XIX в., когда нескольким крупным химикам впервые удалось выделить чистый никель. Среди них был Ж. Л. Пруст, автор закона постоянства состава химических соединений; интересно, что важным аргументом в пользу индивидуальности никеля Пруст считал своеобразный сладковатый вкус раствора никелевого купороса, резко отличный от неприятного вкуса медного купороса. Другой французский химик, Л. Ж. Тенар, окончательно выяснил магнитные свойства никеля (на их своеобразие указывал еще Бергман).

Полувековые усилия исследователей были подытожены Иеремией Рихтером, который более известен в истории химии как один из основоположников стехиометрии. Чтобы получить чистый никель, Рихтер после обжига купферникеля NiAs на воздухе (для удаления большей части мышьяка), восстановления углем и растворения королька в кислоте проделал 32 перекристаллизации никелевого купороса и затем из этих кристаллов восстановил чистый металл. Полученный этим «весьма многотрудным путем» никель был описан Рихтером в 1804 г. в статье «Об абсолютно чистом никеле, благородном металле, его получении и особых свойствах».

В историю элемента № 28 статья Рихтера вошла как пророческая: в ней были указаны почти все характерные особенности никеля, сделавшие его одним из главнейших металлов современной техники, - большая сопротивляемость коррозии, жаростойкость, высокая пластичность и ковкость, магнитные свойства. Эти особенности и определили пути, по которым никель был направлен человеком.

Металлический никель...

Первые применения никелю придумали ювелиры. Спокойный светлый блеск никеля (вспомним Маяковского: «Облил булыжники лунный никель») не меркнет на воздухе. К тому же никель сравнительно легко обрабатывается. Поэтому его стали применять для изготовления украшений, предметов утвари и звонкой монеты.

Но и это весьма незначительное поле деятельности элемент № 28 получил не сразу, потому что никель, который выплавляли металлурги, был совсем не похож на благородный металл, описанный Рихтером. Он был хрупок и практически непригоден для обработки.

Позже выяснилось, что ничтожной (по нормам столетней давности) примеси серы - лишь 0,03% - достаточно, чтобы вконец испортить механические свойства никеля; происходит это из-за того, что тончайшая пленка хрупкого сернистого никеля разъединяет зерна металла, нарушает его структуру. Примерно так же действует на свойства этого металла и кислород .

Проблему получения ковкого никеля решило одно открытие. Присадка магния в расплавленный металл перед разливкой освобождает никель от примесей: магний активно связывает, «принимает на себя» серу и кислород. Это открытие было сделано еще в 70-х годах позопрошлого века, и с тех пор спрос на никель стал расти.

Вскоре выяснилось, что элемент № 28 - не только декоративный металл (хотя никелированием как средством защиты других металлов от коррозии и для декоративны целей пользуются уже около ста лет). Никель оказался и одним из самых перспективных материалов для изготовления химической аппаратуры, которая должна выдерживать разъедающее действие концентрированных рассолов, горячих щелочей, расплавленных солей, фтора , хлора , брома и других агрессивных сред. Химическую пассивность этот металл сохраняет и при нагреве; жаростойкость проложила никелю дорогу в реактивную технику.

Уникальную совокупность свойств увидели в никеле конструкторы электровакуумных приборов. Не случайно больше трех четвертей всего металла, расходуемого электровакуумной техникой, приходится на чистый никель; из него изготовляют проволочные держатели, вводы, сетки, аноды, экраны, керны для оксидных катодов и ряд других деталей.

Здесь наряду с коррозионной и тепловой стойкостью никеля, его пластичностью и прочностью очень ценится низкая упругость пара: при рабочей температуре около 750°С объем электронной лампы насыщается ничтожным количеством никеля - порядка 10-12 г, которое не нарушает глубокого вакуума.

Магнитные свойства никеля

Во многих отношениях замечательны магнитные свойства никеля. В 1842 г. Дж. П. Джоуль описал увеличение длины стальных прутков при намагничивании. Через 35 лет физики добрались и до химических собратьев железа - кобальта и никеля . И тут оказалось, что кобальтовые прутки тоже удлиняются в магнитном поле, а у никеля этот замечательный эффект не обнаруживается. Еще через несколько лет (в 1882 г.) выяснилось, что никель не только не удлиняется, а, наоборот, даже укорачивается в магнитном поле. Явление было названо магнитострикцией. Сущность его состоит в том, что при наложении внешнего магнитного поля беспорядочно расположенные микромагнитики металла (домены) выстраиваются в одном направлении, деформируя этим кристаллическую решетку. Эффект обратим: приложение механического напряжения к металлу меняет его магнитные характеристики.

Поэтому механические колебания в ферромагнитных материалах затухают гораздо быстрее, чем в неферромагнитных: энергия колебаний расходуется на изменение состояния намагниченности. Понимание природы этого «магнитомеханического затухания» позволило создать не боящиеся усталости сплавы для лопаток турбин и многих других деталей, подвергающихся вибрации.

Но, пожалуй, еще важнее другая область применения магнитомеханических явлений: стерженек из никеля в переменном магнитном поле достаточной частоты становится источником ультразвука. Раскачивая такой стерженек в резонансе (для этого подбирают соответствующую длину), достигают колоссальной для ультразвуковой техники амплитуды колебаний - 0,01% от длины стержня.

Никелевые магнитострикторы были применены, между прочим, при никелировании в ультразвуковом поле: благодаря ультразвуку получаются чрезвычайно плотные и блестящие покрытия, причем скорость их нанесения может быть гораздо выше, чем без озвучивания. Так «никель сам себе помогает».

Никель обнаружен в железных метеоритах. «Масса самородного железа в 71 венский фунт весом, которая выпала на воздуха на глазах у нескольких очевидцев в шесть часов пополудни 26 мая 1751 г. близ деревни Грашина в Хорватии и зарылась в землю на три сажени на незадолго до того вспаханном поле»

Ультразвук имеет и множество других применений. Однако никто, по-видимому, не исследовал воздействия быстропеременного магнитного поля на реакции с участием металлического никеля: вызванная магнитострикцией пульсация поверхности должна была бы существенно повлиять на химическое взаимодействие, так что изучение реакции «звучащего» металла может выявить новые неожиданные эффекты.

Никель и его сплавы

Обратимся теперь к сплавам никеля. Но лучше сказать вернемся: ведь история применения никеля началась со сплавов: одни - железоникелевые - человек получил в готовом виде, другие - медноникелевые - он научился выплавлять из природных руд, еще не зная, какие металлы в них входят.

А сейчас промышленность использует несколько тысяч сплавов, в которые входит никель, хотя и в наше время сочетания железо - никель и медь - никель, предоставленные нам самой природой, остаются основой подавляющего большинства никельсодержащих сплавов. Но, наверное, самое важное - это не количество и разнообразие этих сплавов, а то, что в них человек сумел усилить и развить нужные нам свойства никеля.

Известно, например, что твердые растворы отличаются большей прочностью и твердостью, чем их компоненты, но сохраняют их пластичность. Поэтому металлические материалы, подлежащие обработке посредством ковки, прокатки, протяжки, штамповки и т. п., создают на основе систем, компоненты которых образуют между собой твердые растворы. Именно таковы сплавы никеля с медью: оба металла полностью смешиваются в любых пропорциях как в жидком состоянии, так и при затвердевании расплава. Отсюда - прекрасные механические свойства медно-никелевых сплавов, известные еще древним металлургам.

Праотец многочисленного рода этих сплавов - «пакт-хонг» (или «пекфонг»), который выплавляли в Китае, возможно до нашей эры, дожил до наших дней. Он состоит из меди, никеля (20%) и цинка, причем цинк играет здесь в основном ту же роль, что и магний при приготовлении ковкого никеля. Этот сплав в небольших количествах начали получать в Европе еще в первой половине XIX в. под названиями аргентан, немецкое серебро , нейзильбер (новое серебро) и массой других, причем почти все эти названия подчеркивали красивый - серебряный - внешний вид сплава. Никель обладает интересной «отбеливающей способностью»: уже 20% его полностью гасят красный цвет меди.

«Новое серебро» успешно конкурировало со старым, завоевав популярность у ювелиров. Применили его и для чеканки монет. В 1850 г. Швейцария выпустила первые монеты из нейзильбера, и вскоре ее примеру последовали почти все страны. Американцы даже называют свои пятицентовые монетки «nickel». Масштабы этого применения медноникелевых сплавов огромны: столбик из «никелевых» монет, которые изготовлены в мире за 100 с небольшим лет, достиг бы Луны!

Ныне нейзильбер и родственный ему мельхиор (в мельхиоре нет цинка, но присутствует около 1% марганца) применяются не только и не столько для замены столового серебра, сколько в инженерных целях: мельхиор наиболее стоек (из всех известных сплавов!) против ударной, или струевой, коррозии. Это отличный материал для кранов, клапанов и особенно конденсаторных трубок.

А вот более молодой сплав меди и никеля - дитя случая и находчивости. В начале XX в. возникли осложнения при переработке богатых канадских руд, содержавших вдвое больше никеля, чем меди; разделение этих двух металлов было твердым орешком для металлургов. Полковник Амброз Монель, тогдашний президент Международной никелевой компании, подал смелую мысль - не разделять медь и никель, а выплавлять их совместно в «натуральный сплав». Инженеры осуществили эту идею - и получился знаменитый монель-металл - один из главнейших сплавов химического машиностроения. Сейчас создано много марок монель-металла, различающихся природой и количеством легирующих добавок, но основа во всех случаях прежняя - 60-70% никеля и 28-30% меди. Высокая химическая стойкость, блестящие механические свойства и сравнительная дешевизна (его и сейчас выплавляют без предварительного разделения меди и никеля) создали монель-металлу славу среди химиков, судостроителей, текстильщиков, нефтяников и даже парфюмеров.

Если монель-металл - «натуральный сплав» из сульфидных медноникелевых руд, то ферроникель - естественный продукт плавки окисленных руд никеля. Отличие состоит в том, что» зависимости от условии плавки в этом продукте можно широко менять соотношение никеля и железа (большую часть железа переводят в шлак). Ферроникель различного состава используют затем в качестве полупродукта для получения многих марок стали и других железоникелевых сплавов.

Видманштеттова структура. В 1808 г. директор Промышленного музея в Вене Алоиз фон Вндманштеттен, получив от своего друга образцы железных метеоритов, отполировал их и протравил азотной кислотой. Возникли изящные линии травления, отражающие характерную структуру сплава

Таких сплавов великое множество. Всем хорошо известны конструкционные никелевые и нержавеющие хромоникелевые стали. На них уходит почти половина всего никеля, добываемого человеком. Инконель - «аристократический родственник» нержавеющих сталей, в котором железа почти не осталось, это сплав (точнее, группа сплавов на основе никеля и хрома с добавками титана и других элементов. Инконель стал одним из главных материалов ракетной техники. Нихром (20% Cr, 80% Ni) - важнейший из сплавов сопротивления, основа большинства электронагревательных приборов, от домашних электроплиток до мощных промышленных печей. Менее известны элинвар (45% Ni, 55% Fe; легирующие добавки - Cr, Mo, W), сохраняющий постоянную упругость при различных температурах, и платинит (49% Ni, 51% Fe). Последний не содержит платины , но во многих случаях заменяет ее. Как и платину, его можно впаять в стекло, и спай не треснет, поскольку коэффициенты теплового расширения стекла и платинита совпадают. У инвара (36% Ni, 64% Fe) коэффициент теплового расширения близок к нулю.

Особый класс составляют магнитные сплавы. Пожалуй, наибольшие заслуги здесь принадлежат пермаллою FeNi 3 - сплаву с феноменальной магнитной проницаемостью, перевернувшему технику слабых токов. Сердечники из пермаллоя есть в любом телефонном аппарате, а тонкие пермаллойные пленки - главный элемент запоминающих устройств вычислительных машин.

Двигатель американской ракеты «Атлас», работающий при 3200°C, выдерживает эту температуру благодари сотням маленьких никелевых трубок толщиной всего 0,3 мм, образующих стенки камеры сгорания. По этим трубкам проходит жидкое топливо, охлаждающее стенки и само при этом подогревающееся.

Санкт-Петербургский Государственный Технологический Институт

(Технический Университет)

(СПБГТИ(ТУ))

Кафедра неорганической химии

Курсовя работа

на тему: «Химия Никеля»

выполнил студент

1 факульткта 113 гр.

Лебедв В.В.

Санкт-Петербург 2012 г.

Общие сведения о Никеле...................................................3

Нахождение Никеля в природе...........................................4

Получение Никеля................................................................4

Взаимодействие с веществами............................................6

Список литературы...............................................................8

Ни́кель - элемент побочной подгруппы восьмой группы, четвертого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 28. Обозначается символом Ni (Niccolum). Простое вещество никель - это пластичный ковкий переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой защитной пленкой оксида. Химически малоактивен.

Конфигурация внеш. электронных оболочек атома 3s23p63d84s2; степени окисления + 2, редко + 1, +3 и +4;

Никель (Nickel) открыт в 1751 г. Однако задолго до этого саксонские горняки хорошо знали руду, которая внешне походила на медную руду и применялась в стекловарении для окраски стекол в зеленый цвет. Все попытки получить из этой руды медь оказались неудачными, в связи с чем в конце XVII в. руда получила название купферникель (Kupfernickel), что приблизительно означает «дьявольская руда». Руду эту (красный никелевый колчедан NiAs) в 1751 г. исследовал шведский минералог Кронштедт. Ему удалось получить зеленый окисел и путем восстановления последнего - новый металл, названный никелем. Когда Бергман получил металл в более чистом виде, он установил, что по своим свойствам металл похож на железо; более подробно никель изучали многие химики, начиная с Пруста. Никкел - ругательное слово на языке горняков. Оно образовалось из искаженного Nicolaus - родового слова, имевшего несколько значений. Но главным образом слово Nicolaus служило для характеристики двуличных людей; кроме того, оно обозначало «озорной маленький дух», «обманчивый бездельник» и т. д. В русской литературе начала XIX в. употреблялись названия николан (Шерер, 1808), николан (Захаров, 1810), николь и никель (Двигубский, 1824).

Нахождение в природе

Никель довольно распространён в природе - его содержание в земной коре составляет ок. 0,01 %(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (до 8 %). Никель обычно содержится в сульфидных и мышьяк-содержащих медно-никелевых рудах.

1 никелин (красный никелевый колчедан, купферникель) NiAs

2 хлоантит (белый никелевый колчедан) (Ni, Co, Fe)As2

3 гарниерит (Mg, Ni)6(Si4O11)(OH)6*H2O и другие силикаты

4 магнитный колчедан (Fe, Ni, Cu)S

5 мышьяково-никелевый блеск (герсдорфит) NiAsS,

6 пентландит (Fe,Ni)9S8

В растениях в среднем 5 10−5 весовых процентов никеля, в морских животных - 1,6 10−4, в наземных - 1 10−6, в человеческом организме - 1…2 10−6. О никеле в организмах известно уже немало. Установлено, например, что содержание его в крови человека меняется с возрастом, что у животных количество никеля в организме повышено, наконец, что существуют некоторые растения и микроорганизмы - «концентраторы» никеля, содержащие в тысячи и даже в сотни тысяч раз больше никеля, чем окружающая среда.

Получение

Общие запасы никеля в рудах на начало 1998 г. оцениваются в количестве 135 млн т., в том числе достоверные - 49 млн.т. Основные руды никеля - никелин (купферникель) NiAs, миллерит NiS, пентландит (FeNi)9S8 - содержат также мышьяк, железо и серу; в магматическом пирротине также встречаются включения пентландита. Другие руды, из которых тоже добывают Ni, содержат примеси Co, Cu, Fe и Mg. Иногда никель является основным продуктом процесса рафинирования, но чаще его получают как побочный продукт в технологиях других металлов. Из достоверных запасов, по разным данным, от 40 до 66 % никеля находится в «окисленных никелевых рудах» (ОНР), 33 % - в сульфидных, 0,7 % - в прочих. По состоянию на 1997 г. доля никеля, произведённого переработкой ОНР, составила порядка 40 % от общемирового объёма производства. В промышленных условиях ОНР делят на два типа: магнезиальные и железистые.

Тугоплавкие магнезиальные руды, как правило, подвергают электроплавке на ферроникель (5-50 % Ni+Co, в зависимости от состава сырья и технологических особенностей).

Наиболее железистые - латеритовые руды перерабатывают гидрометаллургическими методами с применением аммиачно-карбонатного выщелачивания или сернокислотного автоклавного выщелачивания. В зависимости от состава сырья и применяемых технологических схем конечными продуктами этих технологий являются: закись никеля (76-90 % Ni), синтер (89 % Ni), сульфидные концентраты различного состава, а также металлические никель электролитный, никелевые порошки и кобальт.

Менее железистые - нонтронитовые руды плавят на штейн. На предприятиях, работающих по полному циклу, дальнейшая схема переработки включает конвертирование, обжиг файнштейна, электроплавку закиси никеля с получением металлического никеля. Попутно извлекаемый кобальт выпускают в виде металла и/или солей. Еще один источник никеля: в золе углей Южного Уэльса в Англии - до 78 кг никеля на тонну. Повышенное содержание никеля в некоторых каменных углях, пефтях, сланцах говорит о возможности концентрации никеля ископаемым органическим веществом. Причины этого явления пока не выяснены.

Основную массу никеля получают из гарниерита и магнитного колчедана.

Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железо-никелевых окатышей (5-8 % Ni), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.

Карбонильный способ (метод Монда). Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают СО под высоким давлением. Образуется легколетучий тетракарбонилникель , термическим разложением которого выделяют особо чистый металл.

Алюминотермический способ восстановления никеля из оксидной руды: 3NiO + 2Al = 3Ni +Al2O3

Взаимодействие с веществами

На воздухе компактный никель стабилен, а высокодисперсный никель пирофорен. Поверхность никеля покрыта тонкой пленкой оксида NiO, которая прочно предохраняет металл от дальнейшего окисления. С водой и парами воды, содержащимися в воздухе, никель тоже не реагирует. Практически не взаимодействует никель и с такими кислотами, как серная, фосфорная, плавиковая и некоторыми другими. Металлический никель реагирует с азотной кислотой, причем в результате образуется нитрат никеля(II) Ni(NO3)2 и выделяется соответствующий оксид азота, например:

3Ni + 8HNO3 = 3Ni(NO3)2 + 2NO + 4H2O

Только при нагревании на воздухе до температуры выше 800°C металлический никель начинает реагировать с кислородом с образованием оксида NiO. Оксид никеля обладает основными свойствами. Он существует в двух полиморфных модификациях: низкотемпературной (гексагональная решетка) и высокотемпературной (кубическая решетка, устойчива при температуре выше 252°C). Имеются сообщения о синтезе оксидных фаз никеля состава NiO1,33-2,0.

При нагревании никель реагирует со всеми галогенами с образованием дигалогенидов NiHal2.

Нагревание порошков никеля и серы приводит к образованию сульфида никеля NiS.

И растворимые в воде дигалогениды никеля, и нерастворимый в воде сульфид никеля могут быть получены не только «сухим», но и «мокрым» путем, из водных растворов.

С графитом никель образует карбид Ni3C, c фосфором - фосфиды составов Ni5P2, Ni2P, Ni3P.

Интересно, что никель способен поглощать большие объемы водорода, причем в результате образуются твердые растворы водорода в никеле.

Известны такие растворимые в воде соли никеля, как сульфат NiSO4, нитрат Ni(NO3)2 и многие другие.

Большинство этих солей при кристаллизации из водных растворов образует кристаллогидраты, например, NiSO4·7Н2О, Ni(NO3)2·6Н2О. К числу нерастворимых соединений никеля относятся фосфат Ni3(PO4)2 и силикат Ni2SiO4.

При добавлении щелочи к раствору соли никеля(II) выпадает зеленый осадок гидроксида никеля:

Ni(NO3)2 + 2NaOH = Ni(OH)2 + 2NaNO3

Ni(OH)2 обладает слабоосновными свойствами. Если на суспензию Ni(OH)2 в щелочной среде воздействовать сильным окислителем, например, бромом, то возникает гидроксид никеля(III):

2Ni(OH)2 + 2NaOH + Br2 = 2Ni(OH)3 + 2NaBr

Для никеля характерно образование комплексов. Так, катион Ni2+ с аммиаком образует гексаамминовый комплекс 2+ и диакватетраамминовый комплекс 2+. Эти комплексы с анионами образуют синие или фиолетовые соединения.

При действии фтора F2 на смесь NiCl2 и КСl возникают комплексные соединения, содержащие никель в высоких степенях окисления: +3 - (K3) и +4 - (K2).

Порошок никеля реагирует с оксидом углерода(II) СО, причем образуется легко летучий тетракарбонил Ni(CO)4, который находит большое практическое применение при нанесении никелевых покрытий, приготовлении высокочистого дисперсного никеля и т. д.

Характерна реакция ионов Ni2+ с диметилглиоксимом, приводящая к образованию розово-красного диметилглиоксимата никеля. Эту реакцию используют при количественном определении никеля, а продукт реакции - как пигмент косметических материалов и для других целей.

Характеризуется отличной коррозионной стойкостью, высокой прочностью, эстетической привлекательностью и способностью принимать любую заданную ему форму. Благодаря своим свойствам этот . Более 60% никеля идет на производство нержавеющей стали.

С участием никеля строят дома, выполняют интересный архитектурный дизайн, делают отделку стен и изготавливают водосточные трубы. Никель присутствует в нашей жизни повсеместно. Поэтому сегодня мы рассмотрим его состав, структуру и свойства никеля.

Никель имеет белый цвет с серебристым оттенком. Этот металл часто сочетается с другими материалами. В результате образуются сплавы.

  • Никель содержится в пище, земной коре, воде и даже в воздухе.
  • Никель имеет гранецентрированную кубическую решетку (а = 3,5236А). В обычном состоянии он представлен в форме β-модификации. При катодном распылении переходит в α-модификацию с гексагональной решеткой. Если далее нагреть никель до 200°C, то его решетка станет кубической.
  • У никеля недостроенная 3d-электронной оболочка, поэтому его относят к переходным металлам.
  • Элемент никель входит в состав самых важных магнитных сплавов и материалов, у которых коэффициент теплового расширения минимален.

Никель, не переработанный и добытый в природе, состоит из 5 стабильных изотопов. В периодической системе Менделеева за никелем числится номер 28. Этот элемент имеет атомную массу равную 58,70.

Свойства никеля

Плотность и масса

Никель относится к ряду тяжелых металлов. Его плотность в два раза больше, чем у металла титан, но равна по числовому значению плотности .

Численное значение удельной плотности никеля составляет 8902 кг/м3. Атомная масса никеля: 58,6934 а. е. м. (г/моль).

Механические характеристики

Никель обладает хорошей ковкостью и тягучестью. Благодаря этим характеристикам он легко подвергается прокату. Из него довольно просто получить тонкие листы и небольшие трубы.

При температуре от 0 до 631 К никель становится ферромагнитным. Происходит этот процесс благодаря особенному строению внешних оболочек атома никеля.

Известны следующие механические характеристики никеля:

  • Повышенная прочность.
  • Предел прочности равный 450 МПа.
  • Высокопластичность материала.
  • Коррозионная стойкость.
  • Высокая температура плавления.
  • Высокая каталитическая способность.

Механические характеристики описываемого металла зависят от наличия примесей. Самыми опасными и вредными считается сера, висмут, и сурьма. Если никель насытить газами, то его механические свойства станут хуже.

Тепло- и электропроводность

  • Металл никель имеет следующую теплопроводность: 90,1 Вт/(м·К) (при температуре 25°C).
  • Электропроводность никеля равна 11 500 000 Сим/м.

Коррозионная стойкость

Под коррозионной стойкостью понимается способность металла при воздействии на него агрессивной среды противостоять разрушению. Никель относиться к материалам с высокой стойкостью к коррозии.

Никель не покрывается ржавчиной в нижеперечисленных средах:

  • Окружающая атмосфера. Никель обладает хорошей устойчивостью к высоким температурам. Если никель находится в условиях промышленной атмосферы, то он всегда покрывается тонкой пленкой, которая приводит к потускнению никеля.
  • Щелочи в горячем и холодном виде, а так же их расплавленные состояния.
  • Органические кислоты.
  • Неорганические кислоты.

Кроме этого, ржавчиной никель не покрывается в горячих спиртах и жирных кислотах. Благодаря этому этот металл широко используют в пищевой промышленности.

Химическая промышленность то же широко использует никель. Это происходит благодаря коррозионной стойкости никеля к воздействию высокой температуры и большой концентрации растворов.

Никель подвержен коррозии при следующих окружающих его условиях:

  • Морская вода.
  • Щелочные растворы гипохлоритов.
  • Сера или любая среда, содержащая серу.
  • Растворы окислительных солей.
  • Гидрат аммиака и аммиачная вода.

Токсичность никеля рассмотрена ниже.

Температуры

Известны следующие термодинамические свойства никеля:

  • Температура плавления никеля: 1726 K или 2647 °F или 1453 °C.
  • Температура кипения никеля: 3005 K или 4949 °F или 2732 °C.
  • Температура литья: 1500-1575 °C.
  • Температура отжига: 750 — 900 °C.

Токсичность и экологичность

В больших количествах никель оказывает токсичное действие на организм. Если речь идет о приеме его с пищей, то повышенное содержание этого элемента обязательно вызовет угрозу для здоровья.

Часто встречающие негативное последствие от переизбытка никеля – это аллергия. Так же при воздействии этого металла (в больших количествах) на организм возникают расстройства желудка и кишечника, обязательно повышается содержание эритроцитов. Никель может вызвать хронический бронхит, почечный стресс и нарушение работы легких. Переизбыток никеля провоцирует рак легкого.

Если вода для питья содержит 250 частиц никеля на миллион частиц воды, то такое содержание может вызвать болезнь крови и проблемы с почками. Однако это довольно редко явление.

Никель содержится в табачном дыме. Вдыхание этого дыма или пыли с содержанием никеля приводит к бронхиту и нарушению функционирования легких. Получить это вещество возможно в условиях или в неблагоприятных экологически районах.

Токсичность никеля представляет собой опасность только в случае попадания в организм человека в больших количествах. Если никель используется в промышленности и в строительных делах, то он не опасен.

Другие характеристики

Еще никель имеет следующие характеристики:

  • Удельное электрическое сопротивление никеля равное 68,8 ном·м.
  • В химическом плане никель схож с железом, кобальтом, купрумом и некоторыми благородными металлами.
  • Никель взаимодействует с кислородом при температуре в 500 С.
  • Если никель переходит в мелкодисперсное состояние, то он может самовоспламениться.
  • Никель не реагирует с азотом даже при условии очень высокой температуры.
  • Никель медленнее чем железо растворяется в кислотах.

История

Никель (англ., франц. и нем. Nickel) открыт в 1751 г. Однако задолго до этого саксонские горняки хорошо знали руду, которая внешне походила на медную руду и применялась в стекловарении для окраски стёкол в зелёный цвет. Все попытки получить из этой руды медь оказались неудачными, в связи с чем в конце XVII в. руда получила название купферникель (Kupfernickel), что приблизительно означает «Медный дьявол». Руду эту (красный никелевый колчедан NiAs) в 1751 г. исследовал шведский минералог Кронштедт. Ему удалось получить зелёный окисел и путём восстановления последнего — новый металл, названный никелем. Когда Бергман получил металл в более чистом виде, он установил, что по своим свойствам металл похож на железо; более подробно никель изучали многие химики, начиная с Пруста. Никкел — ругательное слово на языке горняков. Оно образовалось из искажённого Nicolaus — родового слова, имевшего несколько значений. Но главным образом слово Nicolaus служило для характеристики двуличных людей; кроме того, оно обозначало «озорной маленький дух», «обманчивый бездельник» и т. д. В русской литературе начала XIX в. употреблялись названия николан (Шерер, 1808), николан (Захаров, 1810), николь и никель (Двигубский, 1824).


Физические свойства

Металлический никель имеет серебристый цвет с желтоватым оттенком, очень твёрд, вязкий и ковкий, хорошо полируется, притягивается магнитом, проявляя магнитные свойства при температурах ниже 340 °C.

Химические свойства
Дихлорид никеля (NiCl2)

Атомы никеля имеют внешнюю электронную конфигурацию 3d84s2. Наиболее устойчивым для никеля является состояние окисления Ni(II).
Никель образует соединения со степенью окисления +2 и +3. При этом никель со степенью окисления +3 только в виде комплексных солей. Для соединений никеля +2 известно большое количество обычных и комплексных соединений. Оксид никеля Ni2O3 является сильным окислителем.
Никель характеризуется высокой коррозионной стойкостью — устойчив на воздухе, в воде, в щелочах, в ряде кислот. Химическая стойкость обусловлена его склонностью к пассивированию — образованию на его поверхности плотной оксидной плёнки, обладающей защитным действием. Никель активно растворяется в азотной кислоте.
С оксидом углерода CO никель легко образует летучий и весьма ядовитый карбонил Ni(CO)4.
Тонкодисперсный порошок никеля пирофорный (самовоспламеняется на воздухе).

Никель горит только в виде порошка. Образует два оксида NiO и Ni2O3 и соответственно два гидроксида Ni(OH)2 и Ni(OH)3. Важнейшие растворимые соли никеля — ацетат, хлорид, нитрат и сульфат. Растворы окрашены обычно в зелёный цвет, а безводные соли — жёлтые или коричнево-жёлтые. К нерастворимым солям относятся оксалат и фосфат (зелёные), три сульфида NiS (черный), Ni2S3 (желтовато-бронзовый) и Ni3S4 (черный). Никель также образует многочисленные координационные и комплексные соединения. Например, диметилглиоксимат никеля Ni(C4H6N2O2)2, дающий чёткую красную окраску в кислой среде, широко используется в качественном анализе для обнаружения никеля
Водный раствор сульфата никеля в банке имеет зелёный цвет.

Водные растворы солей никеля(II) содержат ион гексаакваникеля(II) 2+. При добавлении к раствору, содержащему эти ионы, аммиачного раствора происходит осаждение гидроксида никеля (II), зелёного желатинообразного вещества. Этот осадок растворяется при добавлении избыточного количества аммиака вследствие образования ионов гексамминникеля(II) 2+.
Никель образует комплексы с тетраэдрической и с плоской квадратной структурой. Например, комплекс тетрахлороникелат (II) 2− имеет тетраэдрическую структуру, а комплекс тетрацианоникелат(II) 2− имеет плоскую квадратную структуру.
В качественном и количественном анализе для обнаружения ионов никеля (II) используется щелочной раствор бутандиондиоксима, известного также под названием диметилглиоксима. При его взаимодействии с ионами никеля (II) образуется красное координационное соединение бис(бутандиондиоксимато)никель(II). Это — хелатное соединение и бутандиондиоксимато-лиганд является бидентатным.

Нахождение в природе

Никель довольно распространён в природе — его содержание в земной коре составляет ок. 0,01 %(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (до 8 %). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2 кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 — 0,41 % Ni. Он изоморфно замещает железо и магний. Небольшая часть никеля присутствует в виде сульфидов. Никель проявляет сидерофильные и халькофильные свойства. При повышенном содержании в магме серы возникают сульфиды никеля вместе с медью, кобальтом, железом и платиноидами. В гидротермальном процессе совместно с кобальтом, мышьяком и серой и иногда с висмутом, ураном и серебром, никель образует повышенные концентрации в виде арсенидов и сульфидов никеля. Никель обычно содержится в сульфидных и мышьяк-содержащих медно-никелевых рудах.

* никелин (красный никелевый колчедан, купферникель) NiAs
* хлоантит (белый никелевый колчедан) (Ni, Co, Fe)As2
* гарниерит (Mg, Ni)6(Si4O11)(OH)6*H2O и другие силикаты
* магнитный колчедан (Fe, Ni, Cu)S
* мышьяково-никелевый блеск (герсдорфит) NiAsS,
* пентландит (Fe,Ni)9S8

В растениях в среднем 5×10−5 весовых процентов никеля, в морских животных — 1,6×10−4, в наземных — 1×10−6, в человеческом организме — 1…2×10−6. О никеле в организмах известно уже немало. Установлено, например, что содержание его в крови человека меняется с возрастом, что у животных количество никеля в организме повышено, наконец, что существуют некоторые растения и микроорганизмы — «концентраторы» никеля, содержащие в тысячи и даже в сотни тысяч раз больше никеля, чем окружающая среда.
Месторождения никелевых руд

Основные месторождения никелевых руд находятся в Канаде, России, Новой Каледонии, Филиппинах, Индонезии, Китае, Финляндии, Австралии. Природные изотопы никеля.
Природный никель содержит 5 стабильных изотопов: 58Ni (68.27 %), 60Ni (26.10 %), 61Ni (1.13 %), 62Ni (3.59 %), 64Ni (0.91 %).

Получение

Общие запасы никеля в рудах на начало 1998 г. оцениваются в количестве 135 млн т., в том числе достоверные — 49 млн.т.
Основные руды никеля — никелин (купферникель) NiAs, миллерит NiS, пентландит (FeNi)9S8 — содержат также мышьяк, железо и серу; в магматическом пирротине также встречаются включения пентландита. Другие руды, из которых тоже добывают Ni, содержат примеси Co, Cu, Fe и Mg. Иногда никель является основным продуктом процесса рафинирования, но чаще его получают как побочный продукт в технологиях других металлов. Из достоверных запасов, по разным данным, от 40 до 66 % никеля находится в «окисленных никелевых рудах» (ОНР), 33 % — в сульфидных, 0,7 % — в прочих. По состоянию на 1997 г. доля никеля, произведённого переработкой ОНР, составила порядка 40 % от общемирового объёма производства. В промышленных условиях ОНР делят на два типа: магнезиальные и железистые.
Тугоплавкие магнезиальные руды, как правило, подвергают электроплавке на ферроникель (5-50 % Ni+Co, в зависимости от состава сырья и технологических особенностей).

Наиболее железистые — латеритовые руды перерабатывают гидрометаллургическими методами с применением аммиачно-карбонатного выщелачивания или сернокислотного автоклавного выщелачивания. В зависимости от состава сырья и применяемых технологических схем конечными продуктами этих технологий являются: закись никеля (76-90 % Ni), синтер (89 % Ni), сульфидные концентраты различного состава, а также металлические никель электролитный, никелевые порошки и кобальт.
Менее железистые — нонтронитовые руды плавят на штейн. На предприятиях, работающих по полному циклу, дальнейшая схема переработки включает конвертирование, обжиг файнштейна, электроплавку закиси никеля с получением металлического никеля. Попутно извлекаемый кобальт выпускают в виде металла и/или солей. Ещё один источник никеля: в золе углей Южного Уэльса в Англии — до 78 кг никеля на тонну. Повышенное содержание никеля в некоторых каменных углях, пефтях, сланцах говорит о возможности концентрации никеля ископаемым органическим веществом. Причины этого явления пока не выяснены.

Основную массу никеля получают из гарниерита и магнитного колчедана.

1. Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железо-никелевых окатышей (5—8 % Ni), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.
2. Карбонильный способ (метод Монда). Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают СО под высоким давлением. Образуется легколетучий тетракарбонилникель , термическим разложением которого выделяют особо чистый металл.
3. Алюминотермический способ восстановления никеля из оксидной руды: 3NiO + 2Al = 3Ni +Al2O3

Применение


Сплавы

Никель является основой большинства суперсплавов — жаропрочных материалов, применяемых в аэрокосмической промышленности для деталей силовых установок.

* монель-металл (65 — 67 % Ni + 30 — 32 % Cu + 1 % Mn), жаростойкий до 500 °C, очень коррозионно-устойчив;
* белое золото (например 585 пробы содержит 58,5 % золота и сплав (лигатуру) из серебра и никеля (или палладия));
* нихром, сплав сопротивления (60 % Ni + 40 % Cr);
* пермаллой (76 % Ni + 17 %Fe + 5 % Cu + 2 % Cr), обладает высокой магнитной восприимчивостью при очень малых потерях на гистерезис;
* инвар (65 % Fe + 35 % Ni), почти не удлиняется при нагревании;
* Кроме того, к сплавам никеля относятся никелевые и хромоникелевые стали, нейзильбер и различные сплавы сопротивления типа константана, никелина и манганина.

Никелирование

Никелирование — создание никелевого покрытия на поверхности другого металла с целью предохранения его от коррозии. Проводится гальваническим способом с использованием электролитов, содержащих сульфат никеля(II), хлорид натрия, гидроксид бора, поверхностно-активные и глянцующие вещества, и растворимых никелевых анодов. Толщина получаемого никелевого слоя составляет 12 — 36 мкм. Устойчивость блеска поверхности может быть обеспечена последующим хромированием (толщина слоя хрома 0,3 мкм).

Бестоковое никелирование проводится в растворе смеси хлорида никеля(II) и гипофосфита натрия в присутствии цитрата натрия:

NiCl2 + NaH2PO2 + H2O = Ni + NaH2PO3 + 2HCl

Процесс проводят при рН 4 — 6 и 95 °C.

Производство аккумуляторов

Производство железо-никелевых, никель-кадмиевых, никель-цинковых, никель-водородных аккумуляторов.

Радиационные технологии

Нуклид 63Ni, излучающий β+-частицы, имеет период полураспада 100,1 года и применяется в крайтронах.

Медицина

* Применяется при изготовлении брекет-систем (никелид титана).
* Протезирование

Монетное дело

Никель широко применяется при производстве монет во многих странах. В США монета достоинством в 5 центов носит разговорное название «никель».

Биологическая роль

Биологическая роль: никель относится к числу микроэлементов, необходимых для нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что никель принимает участие в ферментативных реакциях у животных и растений. В организме животных он накапливается в ороговевших тканях, особенно в перьях. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям — у растений появляются уродливые формы, у животных — заболевания глаз, связанные с накоплением никеля в роговице. Токсическая доза (для крыс) — 50 мг. Особенно вредны летучие соединения никеля, в частности, его тетракарбонил Ni(CO)4. ПДК соединений никеля в воздухе составляет от 0,0002 до 0,001 мг/м3 (для различных соединений).

Физиологическое действие

Никель — основная причина аллергии (контактного дерматита) на металлы, контактирующие с кожей (украшения, часы, джинсовые заклепки). В Евросоюзе ограничено содержание никеля в продукции, контактирующей с кожей человека.
Карбонил никеля — очень ядовит. Предельно допустимая концентрация его паров в воздухе производственных помещений 0.0005 мг/м³.
В XX веке было установлено, что поджелудочная железа очень богата никелем. При введении вслед за инсулином никеля продлевается действие инсулина и тем самым повышается гипогликемическая активность. Никель оказывает влияние на ферментативные процессы, окисление аскорбиновой кислоты, ускоряет переход сульфгидрильных групп в дисульфидные. Никель может угнетать действие адреналина и снижать артериальное давления. Избыточное поступление никеля в организм вызывает витилиго. Депонируется никель в поджелудочной и околощитовидной железах.

← Вернуться

×
Вступай в сообщество «outmall.ru»!
ВКонтакте:
Я уже подписан на сообщество «outmall.ru»